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Abstract 

Introduction: Body Mass Index (BMI) is a relative measure of whether an individual’s 

weight is at a healthy level for their height. A higher BMI is associated with an increased risk 

of cancer and cardiovascular disease (CVD). However, the biologic mechanisms are not well 

understood. One proposed mechanism is through changes in global DNA methylation levels, 

particularly global DNA hypomethylation. Global DNA hypomethylation refers to lower 

levels of DNA methylation across the entire genome and hypermethylation refers to higher 

levels of DNA methylation across the entire genome. Changes in methylation levels can 

affect gene expression, genomic stability, and chromosomal structure. The methylation status 

of repetitive sequences in the DNA, such as LINE-1, is commonly used to represent a 

surrogate measure of global DNA methylation levels.  

Objectives:  1. Quantify and describe LINE-1 DNA methylation in leukocytes in a large 

sample of healthy volunteers.  

2. Examine the relationship between BMI and LINE-1 DNA methylation levels. 

3. Assess if sex is an effect modifier of the relationship between BMI and LINE-1 DNA 

methylation levels.  

Methods: A nested cross-sectional study was composed of 502 healthy volunteers between 

the ages of 20 and 50. Subjects completed a study questionnaire and provided blood samples 

for laboratory analyses. For each subject, DNA was isolated, underwent bisulfite conversion, 

and LINE-1 DNA methylation levels were measured by Polymerase Chain Reaction (PCR) 

High-Resolution Melting Curve analysis. For the main analysis, a multivariate linear 
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regression model was used to examine the relationship between BMI and LINE-1 DNA 

methylation levels, while controlling for confounders.  

 Results: LINE-1 DNA methylation was normally distributed with a mean of 84.52% and a 

standard deviation of 3.19%. BMI (normal, overweight, and obese categories) was not 

significantly associated with LINE-1 DNA methylation levels in the adjusted linear 

regression model (p=0.41) and the interaction term between BMI and sex was not significant 

(p=0.50). 

Conclusions:  LINE-1 DNA methylation was measured with a high degree of reliability in a 

sample of healthy volunteers. This research provided a description of LINE-1 DNA 

methylation levels in a large healthy population and showed that BMI was not associated 

with global DNA methylation.  
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Chapter 1 

Introduction 

1.1 General Introduction 

Body Mass Index (BMI) is a relative measure of whether an individual’s weight is at 

a healthy level for their height. BMI is the most widely used measure to categorize 

individuals as underweight, normal, overweight, or obese. The World Health Organization 

(WHO) has recommended widely accepted guidelines for categorizing individuals based on 

their BMI (1,2). In this study, the BMI variable was used to classify individuals as normal, 

overweight, or obese. This classification has been used in many studies to evaluate the 

increased risk for disease, including cancer and cardiovascular disease (CVD), for individuals 

who are overweight or obese. 

 In a large study population, BMI is used as a practical measure of body fat because 

BMI is an easily obtainable measure at minor costs. In adult populations the correlations 

between BMI and densitometry measurements range from moderate to strong (3).  

 The prevalence of overweight and obesity in developed countries has been increasing 

over the last couple of decades and is continuing to increase. In Canada, it is currently 

estimated that over half of adults are overweight or obese (4). Those who are overweight or 

obese are at increased risk for many adverse health outcomes, including cancer and CVD. 

However, the biologic pathway between overweight or obese and disease outcomes is not 

well understood. 
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The aim of this research was to gain insight into a potential intermediate endpoint, 

DNA methylation, through which obesity may confer an increased risk of adverse health 

outcomes, including cancer or CVD. 

Epigenetic changes are defined as modifications to DNA that leave the DNA 

sequence intact. DNA methylation (the most common epigenetic change) refers to the 

addition of a methyl group to the 5-carbon position of a cytosine to form a 5-methyl cytosine 

in a CpG (Cytosine-phosphate-Guanine) dinucleotide sequence in DNA. DNA methylation 

plays a vital role in cells by controlling cell function, regulating gene expression, and 

impacting upon DNA stability in the structure of the chromatin (5). The One-Carbon 

Metabolism Cycle is the intracellular process that is responsible for methylating biochemical 

compounds, including DNA. This cycle is primarily comprised of S-Adenosyl-Methionine 

(SAM), S-Adenosyl-Homocysteine (SAH), and homocysteine. The One-Carbon Metabolism 

Cycle is affected by a variety of dietary factors including methionine, Vitamin B12 and B6, 

zinc, and folate. Abnormal levels of cofactors involved in the One-Carbon Metabolism Cycle 

have been associated with several adverse health outcomes (6-9). Two distinct types of DNA 

methylation are considered in relation to adverse health outcomes: global and gene-specific. 

Global hypomethylation, which refers to an overall decrease in the number of methylated 

cytosines across the entire genome, has been suggested to be an early event in carcinogenesis 

and is the focus of this thesis. Global DNA hypomethylation has been shown to adversely 

affect the regulation of DNA by changing genomic stability, increasing mutation rates, and 

modifying gene expression (10).  Paradoxically, global hypomethylation is often 

accompanied by gene-specific increases in methylation levels (11).  
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DNA methylation is an emerging field of research. Reliable methods for measuring 

DNA methylation have recently been developed that can be applied to a large study 

population. The method used for this thesis measured the methylation level of the Long 

Interspersed Nuclear Element 1 (LINE-1) sequence, which is the most abundant long 

repetitive sequence in human DNA, present over 500,000 times. The methylation of LINE-1 

DNA repeats has been shown to be correlated with global DNA methylation levels (12). 

LINE-1 DNA methylation levels represent a surrogate measure for global DNA methylation.   

The use of DNA methylation levels in epidemiologic research, as both a health 

outcome and as a predictor of disease, is emerging. However, very few studies have 

examined the determinants of global DNA methylation changes, such as BMI. This research 

focused on the relationship between BMI and global DNA methylation. Also, factors 

affecting the One-Carbon Metabolism Cycle, and therefore indirectly potential determinants 

of global DNA methylation, were considered as potential confounders. As this thesis is 

nested within a larger study funded by the Canadian Institutes of Health Research (CIHR), 

which focused on identifying the determinants of the One-Carbon Metabolism Cycle 

including: age, gender, alcohol, smoking, and dietary factors, information regarding potential 

confounders of interest was available for this thesis. 

A potential biologic pathway between increased BMI and DNA methylation changes 

is through inflammation. Adipose tissue is an endocrine organ that secretes adipokines. 

Adipokines are biologically active molecules that regulate lipid levels, immune function, 

blood pressure, insulin sensitivity, and vascular growth factors (13,14). In overweight or 

obese individuals, higher levels of adipokines result in systemic low-grade inflammation 

(3,13). Studies have identified that inflammation may affect global DNA methylation levels 
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(15-17). An alternate plausible biologic mechanism through which BMI could influence 

DNA methylation levels is through oxidative stress (17).  

1.2 Rationale 

Elevated BMI has been consistently suggested as a risk factor for several cancer sites 

and CVD. However, these relationships are not well understood with respect to their 

underlying biologic mechanisms. There is strong evidence to suggest that increased BMI and 

alterations in DNA methylation levels are both individually associated with adverse health 

events. However, it is unclear whether increased BMI adversely affects DNA methylation 

levels leading to detrimental health events.  

The use of global DNA methylation as a potential intermediate endpoint on a causal 

pathway for disease outcomes is beneficial to epidemiologic studies because it permits the 

use of a healthy study population, the examination of a relationship with a shorter latency and 

more frequent events, and a potentially stronger relationship. The goal of this study was to 

investigate DNA methylation as a potential intermediate endpoint linking elevated BMI to 

increased cancer and CVD risk. This study contributes to the existing literature because few 

studies have investigated the relationship between BMI and global DNA methylation levels 

measured in white blood cells in a large healthy population while controlling for potential 

confounders.  

In addition, it is difficult to disentangle the independent role of increased BMI from 

other related risk factors, such as physical activity, which are strongly correlated with weight. 

This research will attempt to isolate the relationship between BMI and global DNA 

methylation levels.   
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1.3 Objective 

The objectives of this thesis were:  

1) To quantify and describe LINE-1 DNA methylation levels in leukocytes in a large 

sample of healthy volunteers.   

2) To examine the relationship between Body Mass Index and leukocyte LINE-1 

DNA methylation levels in the study sample. 

3) To investigate whether sex is an effect modifier of the relationship between BMI 

and LINE-1 DNA methylation levels.  

1.4 Context of Research 

This study was conducted within a larger cross-sectional health research program 

aimed at understanding environmental and lifestyle influences on colon cancer risk through 

the use of intermediate events. The primary objective of the larger study was to examine the 

influence of water disinfection by-products on the One-Carbon Metabolism Cycle. The 

exposure of interest was selected by the student investigator due to an interest in 

understanding how elevated BMI was associated with a variety of disease outcomes. The 

larger study collected information regarding lifestyle variables and laboratory measures. Nora 

Zwingerman contributed to the existing study database by conducting the laboratory analysis 

on stored whole blood samples to determine the LINE-1 DNA methylation levels for over 

500 subjects using a High-Resolution-Melt (HRM) method. This approach was facilitated 

through collaboration with Dr. S. C. Pang and Dr. M. Yat Tse from the Department of 

Biomedical and Molecular Sciences at Queen’s University.  
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1.5 Outline of Thesis 

This thesis is organized into five chapters. Chapter 2 is a review of the published 

literature in this area of research and outlines the potential relevance of this research to both 

cancer and CVD.  Chapter 3 contains information regarding the study design and methods, 

including a description of the study population, data collection and validity, and strategies for 

data analysis. The results, the main analysis, findings and sensitivity analyses are presented in 

Chapter 4. Chapter 5, the discussion, focuses on methodological considerations and also 

describes the generalizability, contributions, and future directions for further research.   
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Chapter 2 

Background and Literature Review 

2.1 Body Mass Index 

Body Mass Index (BMI) is the most widely used measure to represent an individual’s 

body composition. This section will present relevant information regarding BMI and 

highlight the importance of expanding the current knowledge of the biological processes 

linking BMI to adverse health outcomes. The implications of preventing, understanding and 

managing obesity, along with health consequences directly associated with obesity, are of 

utmost value due to the increasing prevalence of overweight and obesity in the Canadian 

population.  

2.1.1 Definition 

Body Mass Index (BMI), or Quetelet’s Index, is a relative measure of whether an 

individual’s weight is at a healthy level for their height. To calculate an individual’s BMI, 

weight in kilograms is divided by height in metres squared (18,19). BMI is the most widely 

used measure of body composition because it is obtainable at minor costs and permits a 

standard measure within and between studies (3).  The World Health Organization (WHO) 

has recommended guidelines for categorizing individuals based on their BMI that are widely 

accepted (1,2,20). BMI is typically divided into categories for underweight (< 18.5kg/m
2
), 

normal (18.5 - < 25.0kg/m
2
), overweight (25.0 - < 30.0kg/m

2
), and obese (≥ 30.0kg/m

2
) 

(1,2,20). These BMI categories were largely created on the basis of observational 

epidemiological studies of BMI and associated overall mortality (2). 
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2.1.2 Descriptive Epidemiology 

Over the past 25 years, the BMI of Canadian adults has been increasing (21). In 

Canada, it is currently estimated that over half of adults are overweight or obese (4). Between 

2007 and 2009, the Canadian Health Measures Survey measured BMI for a large sample of 

Canadians and reported that for 20 to 39 year olds, 37% of males and 23% of females were 

overweight, and 19% of males and 21% of females were obese (22). Furthermore, the 

prevalence of overweight and obesity increased in the higher age categories (22). Comparing 

BMI values from the 2007 - 2009 Canadian Health Measures Survey with data from 1986 - 

1992 showed an increase in average BMI, with a shift in the distribution towards higher BMI 

values (21). The increase in BMI over time and with increasing age corresponded with an 

increase in waist circumference and skin-folds thickness measures (22). These results 

indicate that not only are BMI values increasing, but there is also an increase in the amount 

of abdominal and subcutaneous adipose tissue.  

2.1.3 The Relationship between BMI and Body Composition 

There are many methods to measure or estimate total body fat. An ideal measure 

would be able to differentiate between all of the components of an individual’s body mass 

and subtypes of tissues. However, these measurements are costly and require expensive 

equipment operated by trained technicians. Different measures available include: underwater 

weighing (hydrometry), bioelectrical impedance, Dual-Energy X-ray Absorptiometry 

(DEXA), Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and isotope 

dilution (1). These methods are impractical for large-scale studies and therefore, 

anthropometric measures such as BMI, waist circumference, and waist-to-hip ratio are more 

appropriate. In the literature, the correlations between BMI and densitometry (i.e., DEXA) 
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have ranged from moderate (0.6) to strong (0.9) in adult populations (3,23). The assessment 

of body fat percentage from BMI was most accurate when taking into account age and sex, 

meaning that the reliability of BMI as a measure of body fat differs by age group and sex 

(23,24). Additionally, the traditional BMI calculation may not be appropriate to use in 

children, adolescents, or the elderly. In the elderly adipose tissue tends to be redistributed and 

BMI becomes a less valid measure (25,26).  

Generally, the healthy or normal category for BMI (18.5 - < 25.0kg/m
2
) equates to 15 

- 20 percent body fat in adult males and 25 - 30 percent body fat in adult females (27). Sex 

should be considered when assessing body fat because the healthy range of percentage of 

body fat is considerably different for males and females and the distribution of body fat in 

these two groups tends to vary. Males typically present as android or ‘apple shape’ with a 

larger amount of abdominal fat, while females are described as gynoid or ‘pear shape’ with a 

greater amount of subcutaneous fat located in their thighs and hips (27). A recent study by 

Romero-Corral et al. evaluated the accuracy of BMI for determining body fat percentage 

using bioelectrical impedance as the gold standard. This study found that the BMI cut-off for 

obesity at 30 kg/m
2
 had a low sensitivity (43%) and a very high specificity (96%) for 

detecting excess body fat (26). When the study population was stratified by age, BMI had a 

higher sensitivity and specificity for individuals less than 60 years of age compared to 

individuals 60 years of age or older (26).  

Even though BMI does not directly measure the quantity or characterize the amount 

of adipose tissue, clinical predictors of body fat are associated with BMI. These factors 

include blood triglycerides, cholesterol, blood pressure, estrogens, glucose levels, and insulin 

levels (3,28).    
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Often BMI is calculated based on self-reported values of height and weight. 

Validation studies have shown that self-reported and measured height and weight are highly 

correlated (Spearman r>0.9). In addition, self-reported BMI values had a high specificity and 

sensitivity when compared to measured BMI values. However, weight tended to be 

systematically underestimated in self-reported data (29-31). Weight is more accurately 

reported for those less than 60 years of age (29). 

2.1.4 Biological Implications 

Adipose tissue consists of adipocytes, adipose cells, which store fat. Adipose tissue 

expands when carbohydrates are converted into triglycerides, the most prominent storage fat 

stored in adipocytes (3). There are two main types of adipose tissue. Subcutaneous adipose 

tissue is primarily located between the skin and muscle layers. Visceral adipose tissue is 

found in large body cavities, predominantly in the abdominal cavity. Adipose tissue is 

recognized to be a complex organ with endocrine functions (32), with visceral adipocytes 

having greater metabolic activity than subcutaneous adipocytes. Thus, the quantity of intra-

abdominal visceral adipose tissue has a stronger relationship to adverse health outcomes than 

subcutaneous adipose tissue due to the detrimental effects of higher metabolic activity levels 

(13).  

Adipocytes are biologically active cells that release fatty acids, cholesterol, steroid 

hormones, prostaglandins, and active proteins (13).  Adipokines is a term used to describe the 

active proteins secreted from adipocytes. These proteins play a vital role in regulating lipid 

levels, immune function, blood pressure, insulin sensitivity, vascular growth factors, energy 

balance, and inflammation (13,14). Over 50 adipokines have been identified, including: 

leptin, adiponectin, C-reactive protein, tumor necrosis factor alpha (TNF-α), interleukin-6 
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(IL-6), acylation stimulating protein (ASP), insulin-like growth factor-1 (IGF-1), and 

vascular growth factors (VEGF) (13,33). These factors can act locally and at distant sites in 

the body. The secretion of these proteins is affected by adipocyte size. For example, as an 

adipocyte increases in size (i.e. hypertrophies) the cell generally secretes a greater amount of 

adipokines. An exception to this trend is the adipokine adiponectin, an anti-inflammatory 

cytokine, which is released at lower levels in larger cells. The adipokine C-reactive protein is 

a proinflammatory signal that is positively correlated to increases in adipose tissue (3,13). 

Obesity is recognized as a chronic state of generalized low-grade inflammation due to higher 

levels of circulating adipokines (14) that is hypothesized to account for increased incidence 

of gastrointestinal diseases (i.e., Crohn’s disease, colon cancer, and fatty liver) in obese 

individuals (13). 

There is an interaction between adipocyte growth, inflammation and other biologic 

processes. For example, as adipose tissue enlarges it may not have an adequate oxygen 

supply, referred to as hypoxia, which in turn increases the demand for blood supply causing 

the promotion of angiogenesis potentially mediated by hypoxia-inducible factor-1 (HIF-1) 

(13). HIF-1 is also a characteristic of neoplasms because as cells multiply and grow they 

become hypoxic and require nutrients in order to expand. In order to facilitate nutrient supply 

angiogenesis is promoted (34). HIF-1 induces angiogenic factors, such as vascular 

endothelial growth factor (VEGF), which increase the production of endothelial cells (14). 

As adipocytes grow, the cellular structure adapts to increasing demand and requires 

more glucose to produce adipokines. The increased amount of glucose results in a greater 

amount of reactive oxygen species being generated from the mitochondria and causes 

oxidative stress (13).   
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In males and post-menopausal women, adipose tissue is the primary site for the 

production of sex steroids such as estrogen and estradiol. These hormones play an important 

role in cellular function by regulating differentiation, proliferation, and apoptosis (3). IGF-1 

is a peptide hormone which functions in a similar capacity to insulin. In vitro IGF-1 has been 

demonstrated to promote cell proliferation and inhibit apoptosis. In animal models these 

mechanisms result in an increase in carcinogenesis (3). 

Overall, there are many cellular level changes and pathways that are activated as a 

result of adipose tissue. Several candidate mechanisms may explain the association between 

adipose tissue and adverse health events. These different candidate mechanisms have the 

potential to interact with one another. Currently, the biological mechanisms linking elevated 

BMI to adverse health outcomes, such as cancer and CVD, are not well understood and they 

could potentially act through processes associated with inflammation, lipids, hormones, and 

oxidative stress (13,35,36). 

2.1.5 Determinants of BMI 

An elevated BMI is a result of the combination of multiple factors including: genetic, 

metabolic, behavioral, and environmental factors. Some of the behavioral risk factors for 

obesity include: diet, physical activity, alcohol consumption, and smoking. Diet has 

consistently been shown to be a determinant of body size. There is a positive relationship 

between increased BMI and the intake of fat and calories (37). More specifically, energy-

dense food, sugary drinks, and fast food consumption are associated with an increased risk 

for weight gain (27).  

Not only is the quantity and type of food consumed related to BMI but also the 

amount of energy expended during daily activities and exercise are determinants of BMI. 
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Greater amounts of physical activity are associated with a lower risk for weight gain and 

obesity (27,37-39). Furthermore, a sedentary or inactive lifestyle has been associated with an 

increased risk of weight gain and obesity (27).  

Current smoking status has been reported to have an inverse association with BMI 

(40,41);  however, Canadian men and women who are former smokers appear to be more 

likely to be obese (21).  Inconsistent results have been reported for alcohol consumption. 

Overall, more studies report a positive relationship between high alcohol consumption and 

elevated BMI (42-44). 

 Non-modifiable risk factors for an overweight and obese BMI are age, sex, and 

ethnicity. Increased BMI becomes more prevalent with increasing age for males and females 

(21,41). Males tend to have a greater proportion of intra-abdominal adipose tissue compared 

to women prior to menopause. However, women after menopause have a similar distribution 

of adipose to males (45). Ethnicity is related to body size and distribution of fat. Similar BMI 

values in different ethnic population may represent different body compositions (distribution 

of adiposity) (46).  

Socioeconomic status has been associated with body size. Lower education level and 

lower income levels have typically been associated with lower BMI values (21,41,47-49).  

2.1.6 Adverse Outcomes associated with BMI 

Elevated BMI is associated with an increased relative risk between 1.0 and 2.0 for 

impaired fertility and hormonal abnormalities (27). Stronger relationships with relative risks 

between 2 and 3 in obese individuals have been reported for coronary heart disease, 

hypertension, and hyperuricemia (27). The strongest relationships for adverse health events, 

with relative risks estimates greater than 3 have been reported for type 2 diabetes, gallbladder 
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disease, dyslipidemia, insulin resistance, and sleep apnea (27). In addition, an elevated BMI 

is associated with increased risk for several cancer sites. Moderate relative risks (1.5 to 2.0) 

for obese BMI compared to normal BMI are reported for colorectal cancer and 

postmenopausal breast cancer. Moderate to strong relative risks (2.0 to 3.0) are reported for 

endometrial, kidney, and esophageal cancer. Obesity is also likely a risk factor for other 

cancer sites including the pancreas, liver, gall bladder, and the stomach (35). Overall, obesity 

significantly decreases life expectancy by approximately 7 years compared to a healthy 

weight (27).  

According to the WHO and Health Canada, normal BMI is associated with the lowest 

risk for adverse health events. The relationship between BMI and health outcomes tends to 

show a J-shaped curve due to the increased risk for those who are underweight (50). 

Underweight and overweight BMI categories confer an increased risk for adverse health 

events compared to the normal category. Among those with higher than normal BMI there is 

a pattern of increasing risk for adverse health events with increasing BMI (1,51).   

2.1.6.1 Cancer 

In 2007, the World Cancer Research Fund conducted a review of the existing 

evidence and reported an association between increased body fat usually measured by BMI 

and an increased risk for many cancers such as esophageal, pancreatic, colorectal, breast 

(post-menopause), endometrial, and renal cancers (27,52). In addition, a large meta-analysis 

of prospective cohort studies found a significant relationship between elevated BMI and an 

increased risk for all cancers listed above, as well as thyroid and gallbladder cancers, 

leukemia, and melanoma (35). Some of these risk estimates varied by sex and ethnic origin. 

For example, there was a much stronger relationship between high BMI and colon cancer for 
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males compared to females (35). Not only are those with an increased BMI at a higher risk 

for cancer but they also have an increased risk of death from the cancer compared to those 

who are at a healthy weight at the time of cancer diagnosis (50). Current estimates suggest 

that 15 to 20 percent of all cancer deaths in North America can be attributed to overweight 

and obesity (50). Due to the rising prevalence of overweight and obesity, the amount of 

disease that can be attributed to increased body size (i.e. attributable risk) is expected to 

continue to rise. 

2.1.6.2 Cardiovascular Disease  (CVD) 

The American Heart Association describes obesity as a major risk factor for coronary 

heart disease (53). Research has identified increased BMI as an independent risk factor for 

CVD and suggested that the relationship between obesity and CVD is mediated through 

diabetes, hypertension, and dislipidaemia (54,55). Using slightly different BMI cut-off values 

compared to the WHO classification, Rimm et al. found that the relative risk for overweight 

men under 65 years of age was 1.72 and  reported relative risks of 2.61 and 3.44 for the two 

obese categories (obese, very obese) respectively (56). Additionally, obesity, particularly 

intra-abdominal adiposity, has been shown to be associated with an increase in coronary 

artery disease mortality (57,58).  

2.2 DNA Methylation 

Epigenetics is an emerging field of research and may play a vital role in the 

understanding of biologic pathways linking modifiable or lifestyle risk factors with disease 

states. Epigenetic changes are defined as reversible modifications to DNA that leave the 

DNA sequence intact. DNA methylation is the most common epigenetic change. Epigenetics 
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plays an integral component to normal cell functioning. Specifically, DNA methylation 

regulates gene expression.  

2.2.1 Definition and Description 

DNA methylation is a postreplicative modification of DNA that occurs when a 

methyl group (CH3) is added to the 5-carbon position on a cytosine nucleotide that is located 

in a Cytosine-phosphate-Guanine (CpG) dinucleotide pair (59,60).  Figure 2-1 depicts the 

nucleotide cytosine in an unmethylated and methylated form.  

DNA methylation patterns are conserved during replication. The CpG dinucleotide 

pairing is unique because it has the same sequence, in the opposite orientation, on the 

complementary strand of DNA. This is depicted in Figure 2-2. This permits an enzyme called 

maintenance DNA methyltransferase (DNMT1) to maintain DNA methylation during 

replication (61). 

Figure 2-1. Methylation of a Cytosine Nucleotide. Chemical 

structure of a cytosine nucleotide in an unmethylated and a 

methylated form. 
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2.2.1.1 One-Carbon Metabolism Cycle  

The One-Carbon Metabolism cycle (depicted in Figure 2-3) is the process responsible 

for attaching a methyl group to a CpG dinucleotide. Methionine, mainly from the diet, is 

converted into S-Adenosyl-Methionine (SAM), the methyl donor. DNA methyltranferases 

(DNMTs) are the enzymes responsible for removing a methyl group from SAM and attaching 

it onto a cytosine nucleotide, which converts SAM to S-Adenosyl-Homocysteine (SAH). 

Then SAH is converted to homocysteine (Hcy), which can be recycled back to methionine by 

the enzyme methionine-synthase. The normal steady state of this cycle relies on the removal 

or conversion of homocysteine because biochemically the reaction favors the production of 

SAH from homocysteine. SAH binds to DNMTs with a higher affinity than SAM resulting in 

the inhibition of DNA methylation by SAH (62). Yi et al. demonstrated that increased 

homocysteine levels were positively related to SAH levels, that there were strong correlations 

between SAH levels in plasma and in lymphocytes, and that SAH levels were negatively 

Figure 2-2. Complementary Pairing of 

CpG Dinucleotides. A segment of DNA 

with DNA methylation at complementary 

CpG sites. 
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correlated with DNA methylation changes (62-64). Abnormal levels of homocysteine, SAH, 

or SAM indicate an imbalance in the pathway (65,66).   

The One-Carbon Metabolism Cycle is a complex cycle involving many additional 

cofactors.  Some of these dietary factors include folate, Vitamin B12 and B6, choline, and 

methionine (67). Furthermore, genetic polymorphisms and expression levels of enzymes 

involved in the One-Carbon Metabolism Cycle may have an impact on the functionality of 

the cycle (63,67,68). 

2.2.2 Prevalence of Methylation in the Human Genome 

CpG dinucleotides are predominantly found in two locations in the human genome 

and have varying standard DNA methylation levels. Fifteen to twenty percent of CpG 

Figure 2-3. The One-Carbon Metabolism Cycle. The cycle is responsible for methylating 

compounds through the activity of methyltransferases that take a methyl group from SAM. 

Legend: S-Adenosyl-Methionine (SAM), S-Adenosyl-Homocysteine (SAM), Tetrahydrofolate 

(THF), Methylene-Tetrahydrofolate (MTHF), Methyl-Tetrahydrofolate (Me-THF). 
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dinucleotides are located in CpG islands that are located upstream, in the 5’ region, of 

approximately half of human genes. These CpG islands normally have low levels of 

methylation (10,61,69), while the other eighty percent of CpG dinucleotides are located in 

repetitive sequences and are normally highly methylated (10,61).  

2.2.2.1 Global DNA Methylation 

Global DNA methylation refers to the methylation level across the entire genome 

(10). Globally, 70 to 90 percent of CpG sites are methylated in human DNA (10,70), 

although this varies based on tissue site. Methylation levels of some repetitive sequences, in 

particular LINE-1, have been shown experimentally to be highly correlated with genome-

wide methylation levels; however, this is specific to certain regions of the LINE-1 sequence 

(12). Alu is a short repetitive sequence that is 350 base pairs in length. The Alu and Sat2 

(human satellite 2 repeat) have also been shown to be correlated with global DNA 

methylation levels (12).  

It is unrealistic to measure overall genome-wide methylation on a large number of 

samples because the methods are prohibitively time-consuming and expensive, as discussed 

in section 2.2.3.2. Thus, DNA methylation in specific repetitive elements is used as a proxy 

measure for genome-wide methylation. For this study, the methylation status of LINE-1 

repetitive sequence was chosen to represent a surrogate measure of overall global 

methylation as suggested by the literature (12). 

2.2.2.2 Gene-Specific DNA Methylation 

Gene-specific DNA methylation refers to the methylation level of a particular region, 

usually CpG islands or promoter regions of a gene. It is currently estimated that fifty to sixty 
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percent of genes have CpG islands (70). Site-specific DNA methylation levels normally tend 

to be lower than global methylation levels and functionally control gene activity by 

suppressing gene transcription. Changes in site-specific DNA methylation are also of interest 

in disease etiology, in particular cancer (71,72), but are not the focus of this thesis. 

2.2.3 Measurement of DNA Methylation 

A variety of methods have been established to quantify DNA methylation levels. 

Each of these methods possesses strengths and weaknesses. This section will discuss briefly 

the most common methods and their applicability. Many novel approaches to measure DNA 

methylation are being researched. It is important that the validity of any novel method is 

investigated. Epidemiologic studies of DNA methylation require a measure that is not only 

valid, but also feasible to perform on a large number of subject samples and that uses a small 

amount of DNA.  

2.2.3.1 Stability of DNA Methylation in Blood Samples  

DNA methylation is relatively stable given that the methyl compound is covalently 

bonded to the cytosine nucleotide. This is a stable bond that is maintained during routine 

DNA extraction procedures (73). The stability of DNA methylation in a biologic sample is 

supported by the observation that there was no correlation between the amount of time a 

sample was stored in a freezer and methylation levels (16,74).  

2.2.3.2 Methods to Measure Global DNA Methylation 

The first methods outlined have the ability to directly measure overall global DNA 

methylation levels. High Performance Liquid Chromatography (HPLC) or Mass 

Spectrometry (MS) based methods rely on enzymatic hydrolysis of DNA, which is the 



21 

 

separation of all nucleotides to be analyzed (75,76). These methods require large amounts of 

DNA in order to measure the methylation levels. Methods, such as the methyl acceptor assay, 

which have been developed to quantify the amount of methylated cytosines, incorporate an 

enzyme into the assay which adds a methyl group to all unmethylated CpG sites (75).  

Pyrosequencing and Polymerase Chain Reaction (PCR) based methods rely on the 

use of bisulfite conversion of the starting DNA and then PCR to amplify a segment of DNA. 

Bisulfite conversion replaces all the unmethylated cytosine nucleotides with uracil, while the 

methylated cytosines remain intact. Nucleotides pair in distinct combinations, cytosine pairs 

with guanine and adenine pairs with thymine. However, bisulfite conversion replaces 

unmethylated cytosines with uracil nucleotides, which then bind with adenine. Therefore the 

original unmethylated cytosines are replaced by thymines in subsequent replications. This 

provides DNA in a format where methylated and unmethylated cytosines can be 

distinguished from each other.  

PCR-based methods measure methylation on a segment of DNA, typically 100-200 

base pairs long, that is flanked by primers. Therefore these methods are unable to directly 

measure overall global DNA methylation levels. However, PCR-based methods are ideal for 

quantifying methylation levels at multiple sites or in repetitive sequences. Pyrosequencing is 

an expensive method used to determine the nucleotide order in the segment. MethyLight uses 

quantitative real-time PCR with probes and primers specific to methylated and unmethylated 

DNA (77). Another method, which will be discussed in further depth in the methods section, 

is Methylation-sensitive High-Resolution Melting (HRM). This method takes advantage of 

the different number of bonds which results in a strength difference between cytosine-

guanine nucleotide pairing that has 3 hydrogen bonds, and adenosine-thymine nucleotide 
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pairing that has 2 hydrogen bonds. Quantitative PCR (qPCR) is used to amplify a sequence. 

Then the melt profile is used to differentiate along the spectrum from unmethylated to 

completely methylated strands (78,79). Stanzer et al. validated methylation levels using HRM 

with Pyrosequencing and MethyLight; the correlation coefficients were 0.943 and 0.949, 

respectively (80). This illustrates the utility of more cost-effective methods, such as HRM, 

for measuring DNA methylation levels.  

Each method has its own set of potential limitations. When utilizing a novel method it 

is important to investigate the reliability and the validity of the method. For each method, 

sources of potential error should be addressed. These may include: starting quantity of DNA, 

number of CpG sites, PCR bias, assay efficiency, and reliability. For example, if using a 

Mass Spectrometry (MS) method it would be important to validate the starting quantity of 

DNA accurately and to ensure that a complete hydrolysis had occurred. PCR based methods 

have to be completed on multiple experimental runs, therefore the reliability between runs 

should be assessed. Similarly, the primers are typically designed based on a methylated DNA 

strand which has the potential to result in PCR bias, which should be assessed.  

2.2.3.3 Locations 

Repetitive elements are sequences of DNA that repeat across the human genome and 

do not encode genes. Interspersed repetitive elements are distributed widely throughout the 

genome. There are two main categories of interspersed repetitive DNA: long interspersed 

nuclear elements (LINEs) and short interspersed nuclear elements (SINEs). SINEs are less 

than 500 base pairs in length. The most abundant SINE is the repetitive sequence Alu, which 

has over 1,000,000 copies and accounts for approximately 11 percent of the human genome 

(81,82). LINEs are sequences with more than 500 base pairs in length. LINE-1 has over 
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500,000 copies in the human genome and comprises approximately 17 percent of the human 

genome (83-85).  

2.2.3.4 Tissue Specificity 

Global DNA methylation levels in humans are tissue-specific (12,84,86). Firstly, the 

baseline levels in tissues may be different because methylation patterns are involved in the 

differentiation process to form organs during embryogenesis. Additiona lly, some tissues have 

a transsulfuration pathway to assist in the removal of homocysteine from cells, while some 

other tissues do not (62). Lymphocytes do not have the transsulfuration pathway and 

therefore may be associated with higher homocysteine levels and an increased sensitivity to 

SAH levels. 

Cell types within a specific tissue may also have different methylation patterns. 

Leukocytes, commonly known as white blood cells, are comprised of five different white 

blood cell types: neutrophils, eosinophils, basophils, lymphocytes, and monocytes. All of 

these cell types originate in the bone marrow and may have different methylation patterns 

(74). 

2.2.3.5 DNA Methylation in Leukocytes as a Biomarker 

Research on whether DNA methylation in leukocytes is a useful biomarker for 

different health outcomes is limited. For a biomarker of an intermediate endpoint to be 

meaningful in understanding disease causation, the biomarker has to be correlated with the 

endpoint of interest and exposures should be related to the marker. Although research is 

currently limited, there is evidence to support these criteria for DNA methylation measured in 

leukocytes. Epidemiologic studies have reported associations between global DNA 
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methylation in leukocytes and several different cancers including cancers of the colon, 

bladder, stomach, breast, and head and neck (87-92). Epidemiologic studies have reported 

relationships between demographic factors (e.g. age, gender, and race), environmental 

exposures (e.g. benzene and air pollution), and other risk factors (e.g. cigarette smoking, 

alcohol consumption, and diet) and global DNA methylation in leukocytes (93,94). 

Furthermore, it has been suggested that there may be a systemic change in methylation levels, 

which may predispose individuals to adverse outcomes (89,95) 

2.2.4 Levels of DNA Methylation 

To be useful as an endpoint in an epidemiologic study a biomarker must have 

meaningful variability in the study population. There is considerable variation in DNA 

methylation levels in humans. In repetitive sequences the variability between healthy 

individuals is between 5 to 25 percent in blood (96). Strong evidence supports the ability of 

environmental or lifestyle factors to modify methylation levels both globally and at specific 

gene sites. Early studies from monozygotic twins depict diverging methylation patterns with 

age and with dissimilar exposures (93,97). Terminology has been coined to refer to relative 

states of methylation levels. 

2.2.4.1 Hypomethylation and Hypermethylation 

When DNA methylation levels of test samples are greater than average levels in 

healthy specimens the region is considered to hypermethylated. Conversely, when DNA 

methylation levels of test samples are lower than average levels in healthy specimens the 

region is considered to be hypomethylated. These are both relative states on a continuum of 

methylation level (10). 
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2.2.4.2 Stability of DNA Methylation Levels in Individuals  

For DNA methylation to be a useful measure in epidemiologic studies it is important 

for methylation levels to be fairly stable over short periods of time.  Kok et al. examined 

fasting blood samples from ten individuals longitudinally over time intervals of one week and 

ten months. No differences between the methylation measurements were observed (98). This 

provides support that DNA methylation levels are relatively stable in an individual over at 

least ten months. 

2.2.4.3 Potential Mechanisms leading to Hypomethylation 

Research is expanding to elucidate the mechanisms involved in regulating and 

altering methylation status. The primary cause of hypomethylation is related to the disruption 

in the One-Carbon Metabolism Cycle, which has been shown to influence the activity of 

DNMTs. Also, the failure of maintenance DNA methyltransferase to maintain methyl levels 

during replication would result in lower methylation levels (99). It has been suggested that 

DNA may be actively demethylated, however, the mechanisms and enzymes involved are 

still unknown (100). Lastly, if a methylated cytosine undergoes a deamination reaction it 

becomes a thymine nucleotide (99) and therefore would not be recognized by DNA repair 

enzymes as abnormal and consequently would not be replaced.   

2.2.5 Biologic Function of DNA Methylation in Cells 

DNA methylation is critical during embryogenesis. In mouse models, knock-out of 

the DNMTs is embryonic lethal, indicating that the establishment and maintenance of 

methylation patterns are crucial for development (61). DNA methylation plays a vital role in 

the inactivation of an X-chromosome in females and gene imprinting (101). A number of 

congenital abnormalities and malignancies are associated with abnormal methylation patterns 
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or mutations in the DNMTs (102). This further illustrates the importance of methylation 

levels in healthy development.  

 The activity level of a gene is regulated by its levels of transcription from the 

genome. DNA methylation in a promoter region of a gene suppresses its transcription. 

Consequently, both hypomethylation and hypermethylation at specific sites (genes) and 

global hypomethylation can change the activity level of genes. Generally, hypomethylation 

would allow for greater activity while hypermethylation would down-regulate genes 

(93,102).  

 From cell line studies it has been shown that global DNA methylation functions to 

assist in genomic stability. Stabilizing the genome is done by suppressing recombination and 

preventing mutations. It has been suggested that hypomethylated DNA causes an increased 

frequency of mutational events (103). 

 Finally, DNA methylation is critical in coordinating the structure of chromatin. 

Euchromatin refers to an expanded or open chromatin structure that permits access of 

transcription factors to genes. Euchromatin is characterized as DNA being loosely bound to 

histones and DNA being hypomethylated. Conversely, when DNA is condensed or in a 

heterochromatin form, it is tightly woven around histones and the DNA is highly methylated. 

There are proteins called Methyl-Binding Domain proteins which specifically bind to 

methylated cytosine and act to suppress transcription (104-106). Thus, not only does 

methylation suppress transcription, but there is an interaction between methylation levels and 

chromatin structure that functions to further control gene expression and genomic stability.  
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2.2.6 Determinants of Global DNA Methylation 

Information regarding the determinants of global DNA methylation levels in 

leukocytes is limited. This section will first outline the evidence for the determinants of 

leukocyte DNA methylation levels. Then the known and potential determinants of DNA 

methylation levels based on factors affecting the One-Carbon Metabolism Cycle will be 

discussed.  

Few studies in the literature have examined the lifestyle determinants of leukocyte 

global DNA methylation levels. A number of non-modifiable factors (e.g. age and sex) have 

been shown to influence methylation levels. Although inconsistent findings have been 

reported, there is evidence to support that with increasing age, genome-wide methylation 

levels decrease (93,107,108). The effect of age on methylation levels tends to be more 

prominent in the Alu sequence rather than the LINE-1 repetitive sequence (107). Further 

support for an inverse relationship between age and methylation levels comes from two 

studies which measured methylation levels in blood samples collected at two separate times 

(107,109). One study found that one-third of their study population showed methylation level 

changes greater than 10 percent between samples collected 11 years a part (109).  

Methylation levels in repetitive elements vary by sex. The majority of studies have 

found that males have higher overall global and LINE-1 DNA methylation levels compared 

to females (16,90,94,96,110). However, the type of repetitive sequence appears to influence 

the relationship between sex and DNA methylation levels. Inconsistent findings exist for the 

relationship between sex and the Alu repetitive elements (111), with studies reporting that 

females had higher Alu methylation levels compared to males (94,112). Lastly, studies have 
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reported inconsistent findings for the relationship between ethnicity and DNA methylation 

level (93,113). 

Modifiable factors in relation to methylation levels are currently being researched. 

Smoking has been investigated in relation to methylation levels in several studies 

(16,93,94,112,114). Overall, the evidence does not support an association between smoking 

and methylation levels, either globally or in specific repetitive sequences. Mixed results exist 

for the relationship between alcohol and methylation levels. Lower Alu methylation levels 

(but not LINE-1) have been associated with increased alcohol consumption (94,110,112). 

Conversely, a case-control study that compared methylation levels in individuals diagnosed 

with alcoholism with controls found higher (8 to 10 percent) global methylation levels in 

those with alcoholism (115).  

Associations have also been reported between DNA methylation levels and 

environmental exposures to chemicals and metals. Chemical exposure to benzene, air 

particulates (i.e., sulfate and black carbon), and medications (i.e., cytidine analogs) have been 

associated with decreased DNA methylation levels (93,116). Exposure to certain metals has 

been identified to affect methylation levels. Nickel and arsenic have been associated with 

hypermethylation and lead has been associated with hypomethylation (93,116).   

 It is important to note that one of the major studies that examined potential 

determinants of DNA methylation had a low amount of variability in methylation levels. The 

methods used to measure methylation levels and the different genome regions or sequences 

measured may result in different associations being observed. Overall, the determinants of 

DNA methylation levels are still largely unknown and may differ by location and tissue. 



29 

 

Further research is required to adequately address epidemiologic risk factors for global and 

repetitive sequence DNA methylation levels.  

The One-Carbon Metabolism Cycle is the molecular cycle that regulates methylation 

capacity. It has been suggested that increased SAM levels may protect DNA from 

demethylation (117). However, in healthy individuals, it has been found that homocysteine 

has been inversely correlated with methylation levels (62). Dietary factors, especially those 

involved in the One-carbon Metabolism Cycle, such as folate, choline, and vitamins B12 and 

B6, may influence methylation levels. Most observational studies have not seen a relationship 

between dietary folate and leukocyte DNA methylation levels (93,98). However, in a 

randomized controlled trial participants randomized to folate supplementation had an 

increase in DNA methylation levels in leukocytes compared to the placebo group (118). This 

suggests that dietary factors may play a critical role in maintaining normal methylation 

levels.  

Furthermore, other dietary factors that affect the One-Carbon Metabolism Cycle may 

influence DNA methylation levels. These additional factors include zinc, selenium, and 

methionine (10,62,119). Additionally, polymorphisms in the enzymes involved in the One-

Carbon Metabolism Cycle have been associated with DNA hypomethylation in a few studies 

(67,68) but not others (93,98,120). In vitro, polyphenols and soya compounds were shown to 

inhibit DNMT activity in a dose-dependent manner, however the amount of these compounds 

required was greater than the nutritionally consumed dose (7).  

2.2.7 Outcomes associated with Global DNA Methylation Levels 

Global DNA methylation is recognized as an important factor in an array of adverse 

health outcomes. A potential mechanism for the increased risk of certain diseases with age 
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may be related to decreasing lifetime methylation levels. Specifically, aberrant global DNA 

methylation has been suggested to play an etiologic role for the two most common chronic 

diseases: cancer and CVD (10,121-124). 

2.2.7.1 Cancer 

Global and LINE-1 DNA hypomethylation are common characteristics of human 

cancers (91). Evidence has supported the role of DNA methylation in the development of a 

wide variety of cancers such as colon, cervical, and prostate cancer, and also leukemia 

(10,84,125,126). Consistently, global DNA hypomethylation is recognized as an early event 

in neoplastic development (10,124). Methylation levels are currently being examined as 

potential biomarkers for cancer risk, detection, and prognosis (127).  

The strongest evidence exists for global DNA hypomethylation as a risk factor for the 

transformation of normal to neoplastic colon tissue. This section will briefly discuss some of 

the experimental and epidemiological evidence supporting a relationship between global 

hypomethylation and colon cancer. Global DNA hypomethylation is a known characteristic 

of colon tumor cells (128) and has been observed in normal-appearing adjacent colon tissue 

from individuals with colon cancer (87,118,129). Leukocyte DNA from subjects with 

colorectal adenomas was less methylated as compared to subjects with a normal colonoscopy 

(87). There exists a strong association between global DNA hypomethylation and 

chromosomal instability in colon cancer (126) suggesting that this may be a component of the 

pathway through which decreased global methylation would lead to carcinogenesis. Lastly, 

common polymorphisms in enzymes of the One-Carbon Metabolism Cycle have been shown 

to influence the risk of colorectal neoplasia (87,130). Overall, evidence supports global DNA 

hypomethylation as an early event in colon cancer development.  
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2.2.7.2 Cardiovascular Disease (CVD) 

The One-carbon Metabolism Cycle is also relevant to CVD. Elevated plasma 

homocysteine is an established risk factor for CVD (6). DNA methylation is becoming 

recognized as an important pathway for CVD. However, the area is new and many questions 

remain. Atherosclerotic lesions have been characterized as having evidence of global DNA 

hypomethylation (131-133). However, it has been suggested that hypomethylation in the 

aortic plaque may be a consequence of rapidly multiplying smooth muscle cells that are 

unable to maintain methylation patterns as opposed to contributing to the etiology of the 

plaques themselves (131). Interestingly, cell lines stimulated with lipids showed global DNA 

hypermethylation, suggesting that DNA hypermethylation may be an early event in 

atherogenesis (131,132).  

Kim et al. examined the association between DNA methylation status and the 

prevalence of CVD in the Singapore Chinese Health Study and found that elevated DNA 

methylation levels in leukocytes were associated with an increased prevalence of CVD 

(myocardial infarction and stroke) and CVD predisposing conditions (hypertension and 

diabetes) in males (111). Additional support originates from a study which compared 

methylation levels of individuals with chronic kidney disease to healthy controls. Global 

DNA hypermethylation was found to be present in patients with inflammation and those with 

CVD compared to healthy controls and DNA hypermethylation was associated with overall 

CVD mortality (16). Another study found that leukocyte LINE-1 DNA hypomethylation was 

associated with ischemic heart disease and stroke (74). 

The literature presents inconsistent findings; global hypomethylation was suspected 

to be associated with atherosclerosis (133) but more recent evidence suggests a relationship 
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between global hypermethylation and CVD. Further research is required to disentangle the 

role of DNA methylation levels in CVD etiology and mortality. 

2.3 Potential Biologic Pathways 

The regulation of methylation patterns and the mechanisms through which 

environmental exposures impact on DNA methylation levels are still being uncovered. This 

section will outline two potential biologic mechanisms through which obesity may have an 

impact on methylation levels: oxidative stress and inflammation depicted in Figure 2-4. 

 

Homocysteine is associated with obesity and the adverse health outcomes. Primarily, 

it is suggested that homocysteine causes DNA damage through oxidative stress. But 

methylation changes, specifically global DNA hypomethylation, may also play a critical role 

in homocysteine-related pathogenesis. This indicates a potential relationship between 

oxidative stress and DNA methylation changes. 

Figure 2-4. Potential Mechanisms between BMI and Methylation Levels. This figure 

illustrates that increased BMI may have an impact on DNA methylation levels through 

oxidative stress and/or inflammation. 
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2.3.1 Oxidative Stress 

Oxidative stress refers to an imbalance of reactive oxygen species, a type of free 

radical, which can act to cause DNA damage. Oxidative stress is considered to contribute to 

the occurrence of carcinogenesis through genotoxic and epigenetic mechanisms (134). 

Experimentally, it has been shown that when a hydroxyl group was added to guanine 

nucleotide, adjacent DNA methylation was inhibited (135). Oxidative stress disrupts the 

binding of DNMTs to DNA, which would result in global DNA hypomethylation (17). 

Lastly, when methylated cytosines react with reactive oxygen species, the cytosines transition 

into unstable compounds that would deaminate or transition into a thymine or uracil 

nucleotide instead (136). Consequently, these mechanisms would result in a decrease in the 

presence of methylated cytosines (i.e.; hypomethylation).  

2.3.2 Inflammation 

Chronic low-grade inflammation is a characteristic of those who are obese. Evidence 

supports the role of inflammation in the etiology of chronic diseases. A few mechanisms 

have been suggested. Chronic inflammation has been associated with increased methylation 

at gene-specific locations (116,137). In vitro, cells exposed to the inflammatory cytokine, IL-

6, exhibited significant increases in global DNA methylation levels (16). Similarly, in vitro  ̧

it appears that IL-6 may have an impact on the activity of DNMTs (138). 

Inflammation has been shown to result in HOCl and perhaps HOBr production 

internally; these compounds have been detected in leukocytes and are known to react with 

DNA to form halogenated cytosines (139,140). In vitro studies have demonstrated that 

DNMTs were unable to discern halogenated cytosines from methylated cytosines and bound 
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to both with equal affinity (15,141). Thus the impact of inflammation and halogenated 

cytosine nucleotides may result in increased DNA methylation levels (15).   

2.4 Literature Review of BMI and Methylation Levels  

This section will examine the existing literature regarding the primary objective of 

this study, that is, to examine the relationship between BMI and DNA methylation levels.  

2.4.1 BMI and the One-Carbon Metabolism Cycle 

Studies have reported an association between BMI and components of the One-

Carbon Metabolism Cycle, including homocysteine, SAM, and SAH. However, these studies 

have been inconsistent ranging from no association to BMI being a strong determinant of 

SAM and SAH (142-144). However, the majority of studies have found relationships 

between BMI and the components of the cycle.   

2.4.2 BMI and Global DNA Methylation 

Only a few studies in the literature have examined the relationship between BMI and 

global or repetitive element DNA methylation levels reporting mixed results. One study 

found that increasing BMI was associated with lower LINE-1 DNA methylation levels in 

healthy women (145), while a few studies have not found a relationship between BMI and 

methylation levels (16,94,112,146). However, Kim et al. observed that BMI was positively 

associated with methylation levels in Alu and Sat2 (111). The existing literature is 

inconsistent when examining the relationship between BMI and methylation. Furthermore, 

many of these studies were conducted in a study population that was burdened with disease 

and therefore it is difficult to determine the influence of BMI on methylation in healthy 

individuals.  
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2.4.3 Reverse Causality 

Since DNA methylation plays a vital role in gene regulation, it has been suggested 

that methylation levels have the potential to regulate body weight. This research has mainly 

focused on gene-specific and not global DNA methylation levels. Genome-wide DNA 

methylation studies found an association between four methylation regions and BMI (147). 

Similarly, two birth cohorts supported an epigenetic component for metabolic disease based 

on the examination of umbilical tissue gene-specific methylation levels and found a few 

candidate genes that were significantly associated with percentage of body fat at 9 years of 

age (148). It appears that some genes may play a causal role in metabolic development and 

therefore BMI. However, the direction of causation and the impact of environmental 

exposures are still unclear. For example, a study of monozygotic twins with discordant BMIs 

did not show an association with methylation levels (149).   

2.4.4 Study Hypotheses 

The laboratory-based scientific literature provides evidence for two possible biologic 

mechanisms for BMI to influence DNA methylation levels: oxidative stress and 

inflammation. However, the proposed biologic mechanisms would result in different 

directions in the effect of elevated BMI on methylation levels. Specifically oxidative stress 

would result in decreased methylation levels and inflammation would result in increased 

methylation levels. Similarly, the epidemiologic literature has demonstrated inconsistent 

findings for the relationship between BMI and DNA methylation. Different epidemiologic 

studies have shown a positive relationship, a negative relationship, and no association 

between BMI and measures of global DNA methylation. Consequently, there is uncertainty 

surrounding the expected direction of the relationship between BMI and DNA methylation 
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levels and it is plausible for BMI to result in hypomethylation or hypermethylation. 

Therefore, it would not be appropriate to constrain this thesis’s hypothesis to only one 

possible direction of association. The hypothesis is that BMI could result in either increases 

or decreases in DNA methylation levels.    
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Chapter 3 

Study Design and Methods 

3.1 Study Objectives  

This thesis research had three objectives.  

Objective 1: To quantify and describe LINE-1 DNA methylation in leukocytes in a 

large sample of healthy volunteers.  

Objective 2:  To examine the relationship between Body Mass Index (BMI) and 

LINE-1 DNA methylation levels in the study population.  

Objective 3: To determine whether sex was an effect modifier of the relationship 

between BMI and LINE-1 DNA methylation levels. 

3.2 Study Design 

This cross-sectional study was nested within a larger study funded by the Canadian 

Institutes of Health Research (CIHR) that examined the relationship between environmental 

and lifestyle factors, and components of the One-Carbon Metabolism Cycle (Principal 

Investigator W. King). The larger study carried out recruitment and data collection on 663 

subjects from 2007 to 2009. The subjects accrued were healthy volunteers from three cities: 

Kingston, Halifax, and Ottawa. Subjects provided a fasting blood sample (whole blood, 

plasma, and serum), completed a short questionnaire, and returned a home water sampling 

kit. Whole blood, serum, and plasma were stored at -80ºC prior to analysis. The analysis of 

the larger study focused on water disinfection byproducts and measures of the One-Carbon 
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Metabolism Cycle, which included biomarkers of DNA methylation capacity (S-Adenosyl-

Methionine, S-Adenosyl-Homocysteine, and Homocysteine). 

3.3 Source Population and Subjects 

The target population was male and female subjects, aged 20 to 50, recruited in 

approximately equal numbers within 10-year age intervals. Subjects with health conditions 

that might be related to the outcome measures were excluded (outlined Section 3.3.1). 

Beyond these considerations, a representative population sample was not a priority because 

the study objectives were oriented towards understanding biologic mechanisms that are 

postulated to be consistent irrespective of population dynamics. Given the nature of the 

underlying relationships of interest, participation bias was unlikely and therefore response 

rates are a secondary consideration after recruitment of a sufficient sample. 

Municipalities served by a public water treatment and distribution system or using a 

surface water source were selected to provide variability in disinfection by-product 

exposures. A large hospital with laboratory facilities was identified in each study area. 

Participants were recruited within the hospital adjacent to medical, research, and educational 

institutions by a study-coordinator employed at each centre. Advertisements on public 

bulletin boards within the hospital and adjacent medical and research institutes described the 

study and asked potential participants to contact the study coordinator. Those responding 

were contacted and an appointment was made to provide a blood sample at the hospital. The 

blood draw took place in the morning after a twelve-hour fast. The study coordinator met 

with the subject at the time of the blood draw in order to administer the questionnaire, 

measure blood pressure, and to give them the water sample kit. Subjects were contacted 3 
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days later to arrange for courier pickup of the water sample kit from their home. 

Compensation ($30) was given to participants who completed the study.  

The Kingston centre was located in the Department of Community Health and 

Epidemiology. Subjects were recruited within adjacent institutions (Queen’s University, 

Kingston General Hospital, Hotel Dieu Hospital, St. Mary’s Hospital, Kingston Regional 

Cancer Centre) comprising an employment and student population of over 27,000. The 

Ottawa study centre was located at the Civic Campus of the Ottawa Hospital and the study 

coordinator recruited from the 3 campuses of the Ottawa Hospital (General, Civic, and 

Riverside) and adjacent medical institutions (Heart Institute, Cancer Centre) with a medical, 

research, and staff workforce of over 20,000. The Halifax study centre was located at the 

IWK Health Centre. Study participants were recruited from this and adjacent medical and 

educational institutions (Dalhousie University, the IWK Health Centre, and the QEII Health 

Sciences Centre). These Halifax institutions have a student/workforce of over 20,000. 

3.3.1 Eligibility and Exclusion Criteria 

For the larger study, potential subjects were screened for current or past history of 

medical conditions that may be related to the outcome of interest (DNA methylation), which 

included cancer, vascular disease, diabetes, or a pregnancy within the last year. These 

individuals were not eligible for the larger study sample. The age range from 20 to 50 years 

was appropriate for this study based on the fact that the chronic diseases of interest tend to 

develop after a long latency period. Since DNA methylation is considered to be an early step 

in the carcinogenic pathway for certain cancers and potentially an early event in CVD, the 

age range for study participants was meant to represent a meaningful time window for the 

early biologic changes. 
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Strategically for this thesis, subjects were excluded to maximize the validity of DNA 

methylation and BMI measurements. Subjects who did not have a fasting blood sample or 

biochemical analyses completed were excluded. Subjects were excluded from the study if 

their measurement of LINE-1 DNA methylation was considered unreliable, which is 

explained in Section 3.5.2.1. Also, all subjects who did not have complete BMI information 

(i.e. height and weight), or had underweight BMI values were excluded from this study 

because of their small numbers. 

3.4 Data Collection 

Participants were recruited from nearby hospitals and educational institutions detailed 

in Section 3.3. For the larger study, participants completed a self-administered questionnaire 

at a university or hospital located study centre. The study recruitment aimed to capture a 

similar population demographic from all three cities. The study questionnaire collected 

information regarding demographic and lifestyle characteristics. The relevant items will be 

detailed in the covariate section. 

3.4.1 Exposure Measurement (BMI) 

Height and weight were self-reported in either Metric or Imperial units. If a subject 

was unsure of his or her current weight or height, then an individual’s weight or height was 

measured by the study research associate responsible for administering the questionnaire. 

Body Mass Index was calculated using the Quetelet’s Index, where BMI is equal to weight in 

kilograms divided by height in metres squared (19). BMI was considered as a categorical 

variable. For the classification of BMI into categories, three divisions were used according to 
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the standard classification used by the World Health Organization: Normal (18.5 - < 25.0 

kg/m
2
), Overweight (25.0 - < 30.0kg/m

2
), and Obese (≥ 30.00kg/m

2
) (1). 

3.4.2 Outcome Measurement (DNA Methylation) 

3.4.2.1 Blood Sample Procurement 

Participants completed a twelve-hour overnight fast prior to having their blood drawn 

from their median antecubital vein. The samples were immediately placed on ice and then 

centrifuged at 3300 rpm for 10 minutes to separate the plasma. The plasma and serum were 

aliquoted into vials and stored at -80ºC until analyzed. For the biochemical analyses, aliquots 

were sent to the Department of Pathology at Queen’s University and to the Laboratory 

Medicine Centre at the Ottawa General Hospital. For the purpose of this study, aliquots of 

whole blood were sent to the Department of Pathology and stored at -80ºC. 

3.4.2.2 Laboratory Procedures and Quality Control 

This section will outline the steps involved in the DNA methylation measurement, 

starting with a blood sample and ending with a percent methylation level. Fundamental to the 

first study objective is the need to assess and document the validity and reliability of the 

measure of DNA methylation in the context of a novel biomarker with no gold standard for 

comparison. An overview of the procedures is provided in section 3.4.2.3 while a complete 

description is provided in sections 3.4.2.3.1 and 3.4.2.3.2.  

3.4.2.3 Overview of DNA Methylation Measurement 

DNA from white blood cells was isolated from a small sample of whole blood. DNA 

was bisulfite converted which converts the DNA to a form which permits the differentiation 

between methylated and unmethylated cytosines. DNA methylation was measured at 8 CpG 
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sites within the LINE-1 sequence which is a repetitive sequence that has been shown to be 

representative of global DNA methylation levels. For each qPCR experiment, five control 

standards with known levels of methylation (0%, 25%, 50%, 75%, and 100% methylated 

DNA) were included in order to generate a standard curve. The melting temperature and 

profile of samples were compared to the standard curves to determine the percent LINE-1 

DNA methylation. Each sample was completed in triplicate in order to have more precision 

around the mean value, to permit the exclusion if a replicate is different from the other two, 

and to assess the reliability of the measurement.   

3.4.2.3.1 DNA Isolation and Preparations  

For this thesis the starting material available to the student investigator was an aliquot 

of 250mL of whole blood for each subject. Genomic DNA from leukocytes (white blood 

cells) was extracted from the blood sample using the 5-Prime ArchrivePure DNA Isolation 

Kit (Inter Medico, Markham, Ontario, Canada). The DNA isolation protocol used is provided 

in Appendix A. The concentration and purity of each DNA sample was measured with the 

NanoDrop 2000 UV-Vis Spectrophotometer (ThermoScientific, Wilmington, Delaware, 

United States of America). In preparation for the bisulfite conversion step, an aliquot of 2mg 

of DNA was made with a final concentration of 100mg/mL. If the DNA was at lower initial 

concentration after isolation, then the sample was concentrated and re-diluted to obtain a final 

concentration of 100mg/mL. This additional step was only necessary for a small number of 

samples. The DNA was stored at -20ºC during the processing and prior to bisulfite 

conversion. 

A 2mg aliquot of DNA was used for the bisulfite conversion step. This step was 

conducted on each subject sample as well as standard human methylated and non-methylated 
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DNA standards purchased from Zymo Research. The Epitect Bisulfite Conversion Kit was 

used to convert the 2mg of genomic DNA. The protocol for the bisulfite conversion process is 

located in Appendix B. This process converts all of the unmethylated cytosine nucleotides to 

uracil nucleotides and all methylated cytosine nucleotides remain intact. Variation in the 

composition of the base pairing permits the detection of different methylation states. The 

bisulfite converted DNA was stored at -20ºC. All samples were thawed once and quantified 

on the NanoDrop 2000. Then, from each converted DNA sample, two aliquots of 8mL each at 

a concentration of 1ng/mL were prepared. To avoid multiple freeze-thaw cycles, the aliquots 

were made within twenty-four hours of DNA quantification. All stock and aliquots were 

stored at -20ºC until DNA methylation measurement.  

3.4.2.3.2 DNA Methylation Measurement Procedures  

The purchased non-methylated standard (i.e. 0% methylated) and the methylated 

standard (i.e. 100% methylated) were combined in different proportions to generate standard 

samples with known methylation levels. For every experiment a standard curve was 

generated using these standards with methylation levels of 0%, 25%, 50%, 75%, and 100%.  

In addition, on every experimental run an internal control was included, which permits the 

inter-assay variation to be assessed. This internal control was from a one-time blood draw 

from a volunteer associated with the study research group.   

High-resolution melt (HRM) analysis is a PCR-based method that requires a 

quantitative real-time PCR (qPCR) equipment. For this project the Roche LightCycler 480 

(Roche Applied Science, Laval, Quebec, Canada) was used. Primers specific to the LINE-1 

region, shown to be representative of global DNA methylation levels (12), were designed by 

Dr. M. Yat Tse. Development of the assay is described in M. Y. Tse et al. (150). This thesis 
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will highlight some of the important aspects of the assay. The primers contained three 

methylation sites and the amplicon was 141 base pairs long and contained eight methylation 

sites. For each experiment, a 96-well plate designed for the Roche LightCycler 480 was used. 

Each reaction well contained a total reaction volume of 12mL, including: 2mL of 1ng/mL of 

bisulfite converted DNA template, 2mL of MgCl2, 2mL of primers, and 6mL of the 

LightCycler 480 High Resolution Master Mix. Therefore, each well had 2ng of DNA 

template to amplify, 0.2mM of each primer, 3.0mM of MgCl2, and High Resolution Master 

mix. The only exception were the three no template control (NTC) wells which did not 

contain any DNA template. These wells served as negative controls for each experiment.  

A fundamental premise of quantitative PCR (qPCR) is that an enzyme in the master 

mix fluoresces when intercalated with double stranded DNA. The application of this method 

permits the quantification of the amount of DNA. The qPCR reaction protocol was optimized 

as described in Tse et al., and described briefly in section 3.5.2.1, to the following conditions: 

10 minutes at 95ºC to activate the Taq polymerase (the enzyme responsible to replicate the 

DNA), then 40 cycles of amplification, which was followed by a high resolution melt 

(HRM). The amplification cycle had 3 steps, beginning with a hold at 95ºC for 10 seconds to 

denature the DNA, followed by 48ºC for 10 seconds for the primers to anneal to the DNA 

sequences, and finally 72ºC for 15 seconds for the extension or replication of the template. 

During every cycle the level of fluorescence was acquisitioned. After 40 cycles were 

completed all samples should have reached their plateau. At this point an HRM is conducted, 

which consists of a run protocol of 95ºC for 1 minute in order to denature all the DNA and 

then 40ºC for 1 minute in order for annealing to occur, and then slow warming from 55ºC to 
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95ºC at a rate of 0.02ºC/second with the fluorescence level being measured 25 times every 

second (150).   

For each set of triplicates multiple steps are involved in the analysis. First the 

crossing point (Cp) value, which is the number of cycles it has taken for a sample to reach a 

specified threshold value or quantity, is examined. Pre-determined cutoffs were made by an 

examination of a dilution assay to examine the limits of the assay. This is explained in 

section 3.5.2.1. Then the melt profiles of each triplicate were examined. The shape of the 

melt profile and the peak temperature for the melting curve provided information about the 

methylation level. Figure 3-1 depicts the melt profiles of the Zymo Research methylation 

standards in triplicates. Both melt profiles have a Gaussian distribution which demonstrates 

that multiple products are amplified.  

 

Figure 3-1. Melt Profiles for Methylation Standards.  The 0% 

methylated DNA (in red) and 100% methylated DNA (in blue) 

standards melt at different temperatures.  
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The narrower shape of the melt profile for the 100% methylation standard compared 

to the 0% would indicate a smaller amount of variability in the methylation level. The distinct 

difference in the melt temperatures between the standards is demonstrated in Figure 3-1. The 

0% methylation standard has a peak melting temperature over 3ºC lower than the peak melt 

temperature of the 100% methylation standard. The Gene Scanning software for the Roche 

LightCycler 480, designed for SNP (Single Nucleotide Polymorphisms), was adapted for the 

methylation analysis by Tse et al. (150). This process scales the fluorescence melt curves for 

intensity and a temperature shift is used to align the normalized melt curves. A difference 

curve is generated using the 0% methylation standard as the reference; this is shown in 

Figure 3-2. Data points for the area under the difference curve for all samples are exported 

into Microsoft Word Excel 2007 where they are summed to calculate the area under the 

difference curve.  

Figure 3-2. Difference Curve for Standard DNA Methylation Levels. 

Normalized melt curves are presented for triplicates of the each standard 

DNA methylation level. 
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Having obtained the values for the area under the curve for the methylation levels of 

the standards on each plate, a standard curve using linear regression was generated for each 

plate. An example of the standard curve is shown in Figure 3-3. This permits the 

quantification of the percent methylation values for the participant samples on the plate by 

interpolating the methylation levels from the area under the difference curve. This process 

results in triplicate measures of DNA methylation levels for each participant based on the 

high-resolution melt curve. For the statistical analysis, the average of the triplicates included 

for each participant was used. 

 

Since the LINE-1 DNA methylation measurements were conducted in triplicates, this 

allowed for the potential exclusion of a replicate for various reasons. First, if there was 

interference in the fluorescence measurement of the melt profile then the single replicate 

Figure 3-3. Standard Curve of Percent Methylation Levels. 
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measure was excluded. Visually, the melt profile should appear as a smooth Gaussian 

distribution, while a disruption in the fluorescence appears as an inappropriate bump or 

shoulder in the profile. Every sample was checked for interference and excluded if this was 

evident. Second, if there was a clear shift in one of the peak melt temperatures compared to 

the other two replicates then the measure was excluded. Lastly, if the sample failed to 

amplify correctly, it was excluded. If more than one replicate had a technical reason to be 

excluded then it was planned to re-run the sample. In total, less than 40 individua l triplicate 

measures were excluded for one of the above reasons out of over 1500 samples. No samples 

had more than one triplicate excluded.  

Methylation measurements, the Cp values, and the plate number on which the sample 

was run were added to the database of the larger study. A statistical rule was applied to 

triplicates, which was if one of the triplicates differed by 5 percent or more from the other 

two replicates than it was excluded (150). Only for 9 samples out of 517 was one of the 

triplicates removed by this rule.  

3.4.3 Covariate Measurements 

Based on the literature review, covariates were selected to be considered as potential 

confounders. These included: age, sex, ethnicity, physical activity, smoking status, alcohol 

consumption, serum folate, and lipid levels. This section will outline how each covariate was 

measured and how it will be considered in the analysis. Because of the lack of literature in 

relation to DNA methylation levels the categories for each covariate were based on 

relationships with relevant health events observed in the literature. 
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3.4.3.1 Description of Potential Confounders  

Age: Participants self-reported their age on the study questionnaire. To be eligible for this 

study subjects had to be between 20 and 50 years of age. Sampling fractions for the larger 

study were based on increments of ten years. Thus for this study, age was categorized into 

three divisions: 20 to 29 years of age, 30 to 39 years of age, and 40 to 49 years of age.  

Sex: Information for a participant’s sex was self-reported in the study questionnaire. The 

larger study aimed to obtain an approximately equal number of males and females in the 

study population.   

Ethnicity: On the study questionnaire participants were asked to report the ethnicity of each 

parent. It was expected that the majority of participants would be of Caucasian decent. 

Ethnicity was divided into 3 categories: Caucasian, Asian, and other. If a parent was reported 

to be non-Caucasian then they were categorized according to the minority parent.  

Physical Activity: To measure an individual’s physical activity level the short International 

Physical Activity Questionnaire (IPAQ) was included in the study questionnaire. The 

guidelines for the IPAQ questionnaire were used to generate an overall Metabolic Equivalent 

(MET) physical activity score per week (151). One MET is the amount of energy that an 

individual would burn sitting each minute. For example, if an individual walked 40 minutes a 

day, seven days a week, he or she would be assigned 1,000 METs. Using the MET score, 

quartiles were generated to represent physical activity in the analysis. A distribution based 

method was used to categorize the MET score in order to achieve equal sized but meaningful 

categories.  

Smoking Status: Smoking status was divided into three categories: current smoker, past 

smoker, and never smoked. The categorization was based on studies that examined lifestyle 
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factors and components of the One-Carbon Metabolism Cycle (152,153). ‘Current smoker’ 

was defined as smoking at least one cigarette a day for the past month. ‘Past smoker’ was 

defined as not being a current smoker but having had at least one cigarette a day for six 

months or more in the past. ‘Never smoker’ included all participants who did not meet the 

criteria to be considered a current or past smoker. If there was a sufficient number of 

smokers, over 15 percent, then categories would be created to represent smoking intensity 

and duration. 

Alcohol Consumption: The quantity and frequency of alcohol consumption in the previous 

month was addressed in the questionnaire. From the information provided, the average 

number of drinks per week was calculated. Categories were created on the basis of logical 

and approximately equal-distant categories. Five categorizes were used to assess alcohol 

consumption: less than 1 drink per week, 1 to 3 drinks per week, 4 to 6 drinks per week, 7 to 

9 drinks per week, and 10 or more drinks per week. The literature does not provide clear 

thresholds for categorizing alcohol consumption. These cut-offs were based on previous 

studies indicating that more than one drink per day or 7 drinks per week was associated with 

an increased incidence for multiple cancers (154) and evidence suggesting that 10 or more 

drinks per week was associated with heart disease and cancer (155).  

Folate Level: Serum folate levels were measured in nmol/L according to established 

laboratory procedures (156). Quartiles were used to categorize folate levels. 

Lipids:  Lipids refers to a classification of normally occurring molecules that are hydrophobic 

small molecules. Biologically, lipids serve a large variety of biological functions. 

Triglycerides and two types of cholesterol (i.e. HDL and LDL) were the lipids examined in 

this study. 
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Triglycerides: Triglycerides are involved in the conversion of dietary components to fat 

storage and play a role in metabolism. High triglyceride levels have been associated with 

diabetes, atherosclerosis, and other cardiovascular diseases. Categories were based on clinical 

cut-offs from the American Heart Association (157,158). Triglycerides were categorized into 

four levels: optimal with values less than 1.3mmol/L, normal with values between 

1.3mmol/L to 1.7mmol/L, moderate with values between 1.7mmol/L to 2.2 mmol/L, and high 

with values equal to or above 2.2mmol/L.  

Cholesterol: High Density Lipoproteins (HDLs) and Low Density Lipoproteins (LDLs) were 

considered for this thesis. Both of these were measured in the unit mmol/L. HDL is 

commonly referred to as the ‘good’ cholesterol because it reduces the amount of plaque in 

arteries. LDL is referred to as the ‘bad’ cholesterol because it can form plaque in arteries. 

HDL levels were divided into four categories based on standard clinical cut-offs: very low 

were values less than 1mmol/L , low were values from 1mmol/L to less than 1.3mmol/L, 

medium were values from 1.3mmol/L to less than 1.5mmol/L, and high were values equal to 

or above 1.5mmol/L being high. LDL levels were divided into four categories based on 

standard clinical cut-offs. Low were values less than 2.6mmol/L, medium were values from 

2.6mmol/L to less than 3.4mmol/L, borderline-high were values from 3.4mmol/L to values 

less than 4.1mmol/L, and high were values equal to or above 4.1mmol/L (157,158). 

3.5 Data Validity 

3.5.1 Overview of DNA Methylation Validity 

Dr. Pang’s laboratory group has been developing the HRM approach to measure 

DNA methylation levels. Reliability of the method is supported by the methodology used. 
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For each plate the methylation values are interpolated based on methylation levels of a series 

of standards with known methylation levels. In order to evaluate the reliability of this 

approach, the methodology used permitted the reliability within plates to be assessed and the 

variability between plates to be assessed. This is important to ensure the accuracy and 

reliability of the method to measure methylation of subject samples consistently within and 

between plate runs.  

3.5.2 Outcome Validity 

The standards used in this study were purchased from Zymo Research. Zymo 

Research conducts quality control to ensure that methylation standards adhere to certain 

criteria. The non-methylated human DNA is produced by using a cell line with genomic 

knock-out of DNMT1 and DNMT3. The methylation level of the non-methylated standard is 

quantified by two methods to ensure that the methylation level is less than 5%. Zymo 

Research generates their methylated human DNA by enzymatically attaching a methyl group 

to all CpG sites. Similarly, their methylated standard is subjected to rigorous quality control 

methods to ensure that the methylated level is greater than 95% (159).  

3.5.2.1 Reliability of DNA Methylation Measurement 

The reproducibility of the final DNA methylation level was measured using different 

amounts of genomic DNA for bisulfite conversion by Tse et al (150). It was shown that using 

2mg of starting DNA for the bisulfite conversion compared to 1mg and 0.5mg had the least 

amount of variability (150). Therefore, for the bisulfite conversion, 2mg of starting DNA was 

used for all participants and for conversion of the DNA standards. Additionally, the primers 
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designed were specific to bisulfite converted DNA and did not amplify unconverted DNA 

template. 

Bisulfite converted (BSC) DNA is less stable than unconverted DNA and it is 

recommended BSC DNA be stored at -20ºC and multiple freeze-thaw cycles be avoided. 

Bisulfite DNA samples for each subject were frozen directly following conversion. All 

bisulfite converted DNA samples were thawed once to quantify the amount of DNA for 

conversion and at the same unfrozen time samples were diluted and two aliquots were made 

for qPCR. Then one aliquot used for LINE-1 DNA methylation level measurement was 

unfrozen in the hours preceding the experiment. Therefore, actions were taken to minimize 

the number of times a sample thawed. A second aliquot of bisulfite converted DNA was 

stored at -20 ºC in case a sample had to be run a second time.  

3.5.2.2 Reliability between Plate  and Adjustments 

Every plate has 96 sample wells and each experimental plate held a series of 

standards with known varying methylation levels to produce a standard curve, an internal 

control sample, 25 subject samples, and non-template-controls (NTCs) in triplicate. Due to 

the fact that only 25 participants could be run on a single plate, measures were taken to 

ensure a minimal amount of variability between plates and the same internal control was 

placed on every plate to permit a comparison between plates. First, all standard curves were 

generated from the same Zymo standards and the same bisulfite conversion reactions. The 

standards were diluted to 1ng/mL, aliquots for all plates were made at one time, and the 5 

points for the standard curve were made. It was predetermined that if the internal control 

varied by more than 2.0% on a single plate from its average on all plates then that plate 
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would be re-run. This measure was taken to identify any plates that systematically differed in 

the percent methylation measurement.  

To assess the reproducibility of the triplicate measures a coefficient of variation was 

calculated. The coefficient of variation measures the variability in methylation measurement 

due to the assay rather than true differences (160).  

3.6 Data Management 

Each sample was assigned a specific laboratory three-digit ID. These IDs were used 

throughout the laboratory procedures. For the methylation experiments, all plate layouts were 

recorded on plate template forms before the experiment and then entered into the RocheLight 

Cycler Program. Data for each experiment was saved on the computer designated for the 

Roche LightCycler 480. An Excel spreadsheet and a Prism file were generated for each plate 

with the standard curve and interpolated data saved. Two final spread sheets were generated, 

one with the methylation measurements for each sample, Cp values, and plate number, and 

the second spread sheet contained the internal control values for each plate. These values 

were double-checked from the original results prior to being entered into the database. 

3.7 Overview of Data Analysis 

The goal of this analysis was to examine the relationship between BMI and LINE-1 

DNA methylation levels. The main analysis strategy used linear regression with percent 

methylation as the outcome and BMI as the exposure of primary interest. Predictors of LINE-

1 DNA methylation levels were controlled for in the adjusted model.  Figure 3-4 is a diagram 

of the potential confounders considered in the model between BMI and LINE-1 DNA 

methylation.  
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The initial step was an examination of the distribution of the outcome (LINE-1 DNA 

methylation), exposure (BMI), and potential confounders. In order to understand the potential 

for confounding, bivariate analysis was conducted between the outcome and potential 

confounders, and between the exposure and potential confounders. A covariate model 

identifying predictors of the outcome at a liberal p-value of 0.20 was created. The main 

analysis examined the relationship between BMI and percent LINE-1 DNA methylation 

controlling for predictors of LINE-1 methylation identified by the covariate model. 

Secondary analysis considered potential interaction with sex and consideration of a 

dichotomous outcome of DNA methylation levels.  

 

Figure 3-4. Causal Diagram of Potential Confounders of Relationship of 

Interest. 
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3.7.1 Descriptive Statistics 

Descriptive statistics for the exposure, outcome, and all covariates considered in this 

study were carried out. Percent DNA methylation, the outcome of interest, was described as a 

continuous variable. The mean, standard deviation, and the 25
th

, 50
th

 and 75
th

 percentile were 

calculated and provided. In addition, the distribution of DNA methylation was tested to see if 

it was normally distributed. For categorical variables the frequencies of each category were 

determined. A summary table outlining the demographic information of the study population 

was generated.  

Bivariate analyses were conducted between the exposure and outcome with all 

covariates being considered. To examine the relationship between the continuous measures 

and categorical variables an F-statistic and T-test, and corresponding p-values were used. A 

chi-square statistic was used to examine the relationship between categorical variables.  

3.7.2 Model Selection 

A least squares regression model was used to evaluate the relationship between BMI 

and LINE-1 DNA methylation. The assumptions of a least squares regression model were 

assessed and included in the analysis section. BMI, if considered as a categorical variable, 

permits a non-linear relationship between BMI and methylation levels. Coefficients in the 

model can be interpreted as a difference in percent DNA methylation for obese and 

overweight individuals compared to those with normal BMI. 

3.7.2.1 Control Strategy for Potential Confounding 

The basic strategy was to create a parsimonious model (from among potential 

covariates) predicting the outcome. The potential confounders that were considered were: 

age, sex, physical activity, smoking status, alcohol consumption, ethnicity, serum folate, and 
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lipids. The covariate model was developed by using a step-wise backwards elimination with a 

liberal p-value of 0.2. The use of a liberal p-value ensures the inclusion of any potential 

confounders in the covariate model (161,162). The sub-set of covariates that were retained in 

the model using this approach was included as potential confounders in each multivariate 

analysis. The step-wise backwards elimination method was selected over a backward 

elimination or change-in-estimate method because of the existing study power and the small 

number of potential covariates. The main advantage of the change-in-estimate approach is the 

elimination of covariates which are not truly confounding the relationship. Given a small 

number of potential confounders there is no advantage to this approach in this study. The 

main analysis examined the relationship between BMI and percent LINE-1 DNA methylation 

controlling for predictors of LINE-1 methylation identified by the covariate model. 

3.7.2.2 Potential for Effect Modification 

Sex had the potential to modify the relationship of interest based on the fact that the 

distribution of adipose tissue varies by sex and that BMI as a measure may not have the same 

meaning for different sexes. In the main regression model, an interaction term between sex 

and BMI was tested.  

3.7.2.3 Sensitivity Analysis  

Physical activity and lipid levels could potentially be on the biologic pathway 

between obesity and DNA methylation changes. Physical activity could mediate or precede 

weight gain in the process of becoming overweight or obese. Triglycerides, LDL, and HDL 

also have the potential to fall on the pathway between obesity and changes in methylation 
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levels. Thus, if necessary, sensitivity analyses were planned to be carried out to compare the 

relationship of interest with and without these covariates.  

Little is known about percent DNA methylation as a pathologic entity. As a result it 

is not possible to determine the most appropriate representation of this outcome in a 

statistical analysis. A sensitivity analysis explored dichotomous outcome variables 

representing hypomethylation and hypermethylation. The lowest 15% of LINE-1 DNA 

methylation values in each sex were considered as events of DNA hypomethylation. The 

highest 15% of LINE-1 DNA methylation values in each sex were considered as events of 

DNA hypermethylation. Similar to the main analysis strategy, covariate models were 

generated using a backward elimination with a liberal p-value of 0.2 to control for potential 

confounders and sex was considered as an effect modifier of the relationship. Logistic 

regressions modeled BMI as the exposure of interest and hypomethylation or 

hypermethylation as a dichotomous event outcome, adjusted for the covariate model and with 

an interaction term for sex and BMI. The odds ratio and 95% confidence interval were used 

to assess the relationship between BMI categories and hypomethylation or hypermethylation.  

3.8 Power and Detectable Effect 

The power of the study was considered in terms of a detectable change in percent 

DNA methylation with the overweight and obese BMI categories in comparison to those with 

normal BMI. A priori the power and detectable effect were calculated based on a sample of 

155 subjects with normal BMI values, 155 subjects with overweight BMI values, and 90 

subjects with obese BMI values. It was determined that the study would have 99.3% power to 

detect a half a standard deviation difference in percent DNA methylation between those 

categorized as overweight compared to normal and 96.4% power to detect a half a standard 



59 

 

deviation difference between those categorized as obese compared to normal (with an alpha 

of 0.05). However, the number of subjects included in the study is considerably different 

from the a prior estimation. So post-hoc the power was calculated. With the total sample size 

of 502 subjects, with 284 subjects with a normal BMI value, 144 with an overweight BMI 

value, and 74 with obese BMI values, this study had 97.0% power to detect a half a standard 

deviation difference in percent LINE-1 DNA methylation between those categorized as obese 

compared to normal and 90.1% power to detect a third of a standard deviation difference 

between those categorized as overweight compared to normal (163).  

3.9 Design Effect 

The study sample for this thesis was selected from the larger study sample, which 

utilized cluster sampling to recruit subjects from three institutions. Observations may be 

more similar within a clustered sample compared to random sample (164,165). Cluster 

sampling is not expected to be a concern as neither the exposure values or outcome values are 

likely to be associated with the study centre. However, variables representing the study centre 

were included as a random effects parameter in the multivariate regression model, to account 

for the possibility that observations will be more similar in this cluster sampling design. 

3.10 Ethical Considerations 

This research, specifically measuring LINE-1 DNA methylation levels, was 

consistent with the consent given by participants and ethics approval that were obtained for 

the larger study. Ethics approval for this thesis project was obtained from the Health Sciences 

and Affiliated Teaching Hospitals Research Ethics Board (REB) at Queen’s University and 

had the study code EPID-316-10. A copy of the approval is attached in Appendix C. The 
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application to the REB outlined that the information in the database and blood samples must 

not have personal identifiers and that only ID numbers were accessible and used by the 

student investigator.  



61 

 

Chapter 4 

Results and Analysis 

4.1 Validity of DNA Methylation Measurement 

The first objective of this thesis was to describe LINE-1 DNA methylation levels in a 

large sample. There were several challenges in this regard, including the application of a 

novel method, a large number of participant samples, and a small amount of starting DNA. In 

addition, there was no opportunity for a comparison with a gold standard DNA methylation 

measurement. Therefore an assessment of the validity of the LINE-1 DNA methylation 

measurement was critical to this objective. In this section, validity was assessed in terms of 

evaluation of the validity of the method and reliability of sample analysis.  

4.1.1 Evaluation of the Validity of the Methylation Measurement Method 

A consistent methodology was used to measure LINE-1 DNA methylation levels. 

Experiments were conducted to evaluate the efficiency of the assay using varying amounts of 

starting template. A dilution curve, using 6 different quantities of starting bisulfite converted 

(BSC) DNA template was run on a plate to calculate the efficiency of the assay and to 

evaluate the amount of starting template that should be included. On two different dilution 

assays (an example can be seen in Figure 4-1), which contained 10ng, 5ng, 2ng, 1ng, 0.5ng, 

and 0.1ng of starting BSC DNA template, the efficiencies were 90% and 93% respectively.   
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The initial amount of BSC DNA template in each reaction well was evaluated using 

the combined results from the two dilution assays in order to have a greater number of 

replicates for each point. This can be seen in Figure 4-2 and it was determined that there were 

no significant differences in percent methylation between 10.0ng, 5.0ng, 2.0ng, 1.0ng, and 

0.5ng. However, when only using 0.1ng of template, the methylation level was significantly 

different from 2.0ng and the variability in the measurement increased. Therefore it was 

determined that the starting quantity for each sample template would be 2.0ng of bisulfite 

converted DNA in every well to minimize variation in methylation measures. A large benefit 

of this assay was that small variations in the starting quantity of BSC DNA did not affect the 

overall methylation measurement unless the value was approaching 0.1ng of starting BSC 

Figure 4-1. Dilution Curve Efficiency. The amplification of different 

starting quantities (0.1, 0.5, 1.0, 2.0, 5.0, and 10.0ng of bisulfite 

converted DNA). 
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DNA template. A cutoff value of a Cp greater than 26.5 was used to exclude any samples 

with an unreliable amount of starting BSC DNA template. 

PCR bias occurs when one product is preferentially amplified over another. Since the 

primers designed for the LINE-1 region were designed complementary to the bisulfite 

converted methylated DNA, it was important to optimize the assay to ensure that both the 

unmethylated and methylated products were amplified with equal efficiency. The annealing 

temperature was adjusted to permit a degree of mismatch base-pairing when the primer 

bound to a complementary region. Optimization of the annealing temperature was completed 

between 54.0ºC and 46.0ºC by 2.0ºC temperature changes in order to determine the optimal 

annealing temperature. In Figure 4-3 the unmethylated and methylated standards show very 

similar Cp values and thus are amplifying with the same efficiency. This indicates that there 

Figure 4-2. Percent LINE-1 Methylation Levels for Dilution Assay. 

The results of the dilution assay show similar LINE-1 methylation 

levels for all starting amounts of BSC DNA except for 0.1ng, which 

also has a larger standard error.  
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is no PCR bias due to the fact that the primers are binding equally to the unmethylated and 

methylated BSC DNA templates.  

4.1.1.1 Statistical Assessment of Initial Amount of DNA Template  

Although the amount of bisulfite converted DNA template was optimized and 

demonstrated to be constant across the amount of template, further calculations were done to 

assess whether there was any PCR bias towards the methylated DNA. Thus the Cp value was 

assessed as a possible determinant of DNA methylation levels in a statistical model and it 

was not significant. The parameter estimate was -0.128, with a p-value for the Cp value to 

predict DNA methylation level of 0.36 indicating further that PCR bias was not a concern in 

the study. 

Figure 4-3. The Crossing Point (Cp) Values for the Methylated and 

Unmethylated Standards. The Cp values were similar indicating that 

both standards are amplifying with the same efficiency, and therefore no 

PCR bias. 
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4.1.2 Reliability of the Method on Subject Samples 

The ability of the newly developed method to reliably measure DNA methylation 

levels is critical to this thesis. Two aspects of reliability were assessed. First, the 

reproducibility of triplicate values for subject samples on a plate (intra-assay reproducibility) 

was assessed with a one-way analysis of variance (166,167) to calculate the coefficient of 

variation. Second, inter-assay reproducibility was assessed based on methylation values of 

the internal control (168). Therefore the reproducibility of the methylation measurement was 

evaluated by examining the coefficient of variation between replicates and between plates.  

4.1.2.1 Reliability of Replicated within Subjects and Between Plates  

For the 502 participants included in the study the coefficient of variation between 

replicates (intra-assay reproducibility) was 1.71% (Table 4-1). Each plate (n=23) contained 

an identical internal control sample. It was predetermined that if any value for the internal 

control varied by more than 2.0% from the mean then the plate would be redone. The 

coefficient of variation for the internal control on 23 plates was 0.87%. For only 4 of 23 

plates was the internal control value more than 1.0% different than the overall mean. The 

internal control DNA methylation value did not reach the pre-determined rule for repeating a 

plate (e.g. a difference of more than 2.0% from the overall internal control mean) for any of 

the plates. Therefore, no plates needed to be repeated. This illustrates that the assay was 

replicable and that there were only small differences in the methylation values for the internal 

control between plates permitting an appropriate comparison of all samples without any 

adjustments of values. 
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Table 4-1. Reproducibility of LINE-1 DNA Methylation Measurement. 

 
Number of 

Triplicate Samples 

Root Mean 

Square Error 

Grand 

Mean 

Coefficient of 

Variation (%) 

Intra-assay variation 502 1.447 84.52 1.71 

Inter-assay variation 23 0.812 93.44 0.87 

     

4.2 Descriptive Statistics 

4.2.1 Study Sample 

The larger study collected information on 663 participants. Participants were 

excluded from this analysis due to: non-fasting blood sample (n=80), missing or inadequate 

blood sample for DNA analysis (n=24), unreliable DNA methylation (n=33), missing BMI 

information (n=8), BMI value considered underweight (n=7), and missing covariate 

information (n=9). All analysis presented are based on the resulting sample of 502 

participants with complete DNA methylation values, BMI, and covariate information. 

4.2.2 Distribution of Outcome, Exposure and Covariate 

4.2.2.1 Distribution of LINE-1 DNA Methylation 

LINE-1 DNA methylation was measured as a continuous variable (i.e. percent 

methylation). The distribution of LINE-1 DNA methylation is presented in Figure 4-4 with a 

normal curve super-imposed onto the histogram. LINE-1 DNA methylation values had a 

mean of 84.52%, a standard deviation of 3.19%, and a median of 84.32%. LINE-1 DNA 

methylation values varied by 22.28% with a range of values from 71.19% to 93.47%.  

Notably, the interquartile range was only 4.25%, with a 25
th

 quartile value of 82.45% and a 

75
th

 quartile value of 86.70%.  
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The Kolmogorov-Smirnov goodness-of-fit test for normal distribution had a p-value 

of 0.12. Therefore, the distribution of LINE-1 DNA methylation can be considered to be 

normally distributed. However, the distribution is slightly skewed to the left, having a 

skewness measure of -0.15.  

 

 

 

 

 

Figure 4-4. Histogram of LINE-1 DNA Methylation Levels in Study Sample. A normal curve is 

superimposed over the distribution of percent LINE-1 DNA Methylation. 
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4.2.2.2 Distribution of Body Mass Index 

Body Mass Index was calculated for each participant. Subjects with BMI values 

below 18.5kg/m
2
 were not included in the study. The distribution of BMI is presented in 

Figure 4-5. A gamma curve was superimposed over the histrogram because it appeared to 

best fit the distribution.    

 

Subsequently, categories for BMI were created. The percentage of the study sample 

categorized as normal, overweight, and obese were 56.6%, 28.7%, and 14.7% respectively, 

presented in Table 4-2.  

 

 

 Figure 4-5. Histogram of BMI in Study Sample. A gamma curve is superimposed over the 

distribution of percent LINE-1 DNA Methylation. 
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Table 4-2. Frequency of BMI Categories in Study Sample. 

Variable Categories N Percentage (%) 
 

   
BMI Normal (18.5 – < 25.0kg/m

2
) 284 56.6 

 Overweight (25.0 – < 30.0kg/m
2
)  144 28.7 

 Obese (≥ 30.0kg/m
2
)   74 14.7  

 

 

4.2.2.3 Distribution of Covariates  

All of the covariates were either fundamentally categorical or categories were created 

from continuous variables (see Section 3.4.3). For each variable the frequency of each 

category and percentages are presented in Table 4-3.  

Subject recruitment was designed to result in an approximately balanced distribution 

by sex and age. The study population for this thesis had a greater proportion of females 

(59%) and a relatively balanced age distribution. The majority (88%) of the study sample 

described their parents’ ethnicity as Caucasian. Twenty percent were past smokers and 14% 

current smokers. Almost a third of participants consumed less than 1 drink of alcohol per 

week, and 22% consumed over 7 drinks per week. Categories for physical activity and serum 

folate levels were based on quartiles.   

For the lipid variables, 6% of the study population was in the highest category for 

triglyceride level, 20% were in the very low category for HDL level, and 9% had high LDL 

levels. 
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Table 4-3. Frequency and Percentages of Categorical Variables  

Variable Categories N Percentage (%) 
 

   
Sex Male 207 42.2 
 Female 295 58.8 
    
Age 20 – 29 years of age 181 36.1 
 30 – 39 years of age 147 29.3 
 40 – 49 years of age  174 34.7 

 
Ethnicity Caucasian 438 87.8 
 Asian   40   8.0 
 Other   24   4.8 

 
Smoking Status Never 330 65.7 
 Past 101 20.1 
 Current   71 14.1 

 
Alcohol Consumption Less than 1 drink/week 157 31.3 
 1 – 3 drinks/week  162 32.3 
 4 – 6 drinks/week   70 13.9 
 7 – 9 drinks/week   52 10.4 
 10 or more drinks/week   61 12.2 

 
Physical Activity Quartile 1 ( ≤ 1117 METs) 125 24.9 
 Quartile 2 ( 1118 – 2273 METs) 125 24.9 
 Quartile 3 (2274 – 4398 METs) 126 25.1 
 Quartile 4 (≥ 4399 METs) 126 25.1 

 
Serum Folate Level Quartile 1 ( ≤ 21.4 nmol/L) 125 24.9 
 Quartile 2 (21.5 – 28.1 nmol/L) 128 25.5 
 Quartile 3 (28.2 – 35.5 nmol/L) 123 24.5 
 Quartile 4 (≥ 35.6 nmol/L) 126 25.1 
    
Triglycerides Optimal ( < 1.3  mmol/L) 355 70.7 
 Normal ( 1.3 – < 1.7 mmol/L)   82 16.3 
 Moderate (1.7 – < 2.2 mmol/L)   34   6.8 
 High ( ≥ 2.2 mmol/L)   31   6.2 
    
HDL Very Low ( < 1.0 mmol/L)   98 19.5 
 Low ( 1.0 – < 1.3 mmol/L) 197 39.2 
 Medium (1.3 – < 1.5 mmol/L) 111 22.1 
 High ( ≥ 1.5 mmol/L)   96 19.1 
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Table 4-3 Continued 

 

 

Variable Categories N Percentage (%) 

    
LDL Low ( < 2.6 mmol/L) 181 36.1 
 Medium ( 2.6 – < 3.4 mmol/L) 196 39.0 
 Borderline High (3.4 – < 4.1 mmol/L)   79 15.7 
 High ( ≥ 4.1 mmol/L)   46   9.2 
    

 

4.3 Bivariate Analysis of the Relation of Covariates to Exposure and Outcome 

This section describes the relationships between BMI and all covariates, as well as, 

the relationship between LINE-1 DNA methylation and all covariates. The intent of these 

analyses was to inform on potential confounders of the relationship of interest in terms of the 

direction and strength of relationships. In addition, these analyses were used to identify 

problematic distributions for subsequent regression analysis (e.g. low cell counts).  

4.3.1 Relationship between BMI and Covariates 

The relationship between BMI and covariates of interest was assessed using a chi-

square test statistic and these relationships are presented in Table 4-4. Where a cell count was 

5 or below a Fisher’s exact test was employed.  

Statistically significant associations (p-value <0.05) were observed for the 

relationship of BMI with sex, age, ethnicity, smoking status, serum folate level, triglycerides, 

HDL, and LDL. There were no statistically significant associations between BMI with 

physical activity and alcohol consumption.  

Patterns of the associations of BMI with covariates are represented with row 

percentages in Table 4-4. Males were more likely to be overweight and obese than females. 

Those in the youngest age group had the healthiest distribution of BMI and were less likely to 
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be overweight or obese compared to the older age groups. With increasing age, there was a 

corresponding increase in the percentage of individuals in the obese BMI category. The 

distribution of BMI varied considerably by ethnicity. Individuals of Asian descent were more 

likely to have a healthy BMI with a very low percentage categorized as obese compared to 

Caucasians. Individuals categorized as ‘Other’ (predominantly comprised as African 

American or Aboriginals) had the largest percentage of individuals with obese BMI values. 

Physical activity was not significantly associated with BMI. The first three quartiles of 

physical activity showed a pattern of increasing activity related to decreased likelihood of 

being obese and increased likelihood of having a healthy BMI. However, the highest quartile 

of physical activity did not follow this pattern with a higher percentage of individuals in the 

obese BMI category reporting higher physical activity levels compared to the second and 

third quartiles. Alcohol consumption was not significantly associated with BMI. The two 

extreme categories, consumption of less than 1 drink per week and consumption of 10 or 

more drinks per week, had the lowest percentages of subjects with a normal BMI compared 

to the other categories.  

Serum folate was significantly associated with BMI. The bottom two quartiles of 

serum folate levels had a much lower percentage of individuals with normal BMI values 

compared to the two highest quartiles of serum folate levels. As would be expected from the 

literature, triglycerides showed a clear and significant relationship with BMI. Those with 

optimal triglyceride levels were most likely to have a normal BMI category and least likely to 

be obese. With increasing triglyceride levels there was an increasing percentage of 

individuals categorized as overweight and obese and decreasing percentages of individuals 

with healthy BMI values. High Density Lipoprotein (HDL) is the ‘good’ cholesterol and the 
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HDL level was inversely related to BMI. Those with very low HDL levels were more likely 

to be overweight or obese compared to a normal BMI. With increasing HDL levels the 

percentages in the normal BMI category increased and the percentages in the obese category 

decreased. Low Density Lipoprotein (LDL) was significantly associated with BMI. 

Individuals in the lowest LDL category were the most likely to have a normal BMI and the 

least likely to be obese compared to all other LDL categories.  

Table 4-4. Associations between BMI and Covariates (Row percentages are presented) 

Variable Categories N BMI –  

Normal 

(N = 284) 

BMI- 

Overweight 

(N = 144) 

BMI- 

Obesity 

(N = 74) 

 Overall 

P-value* 

 
      

Sex Male 207 45.9% 35.8% 18.4%  
 Female 295 64.1% 23.7% 12.2% < 0.01 
       
Age 20 – 29 years 181 69.1% 21.0%   9.9%  
 30 – 39 years 147 49.7% 34.7% 15.7%  
 40 – 49 years  174 49.4% 31.6% 19.0% < 0.01 

 
Ethnicity Caucasian 438 55.3% 29.5% 15.3%  
 Asian   40 77.5% 20.0%    2.5%  
 Other   24 45.8% 29.1%  25.0%    0.02

+ 

 
Physical 
Activity 

Quartile 1 125 48.8% 32.0% 19.2%  
Quartile 2  125 58.4% 29.6% 12.0%  
Quartile 3  126 62.7% 26.2% 11.1%  

 Quartile 4 126 56.4% 27.0% 16.7%   0.33 
 

Smoking 
Status 

Never 330 63.6% 23.9% 12.4%  
Past 101 43.6% 38.6% 17.8%  

 Current   71 42.3% 36.6% 21.1% < 0.01 
 

Alcohol 
Consumption 

Less than 1 157 51.6% 29.9% 18.5%  
1 – 3  162 59.9% 28.4% 11.7%  

(drinks/week) 4 – 6    70 57.1% 25.7% 17.1%  
 7 – 9    52 61.5% 23.1% 15.4%  
 10 or more    61 55.7% 34.4%   9.8%   0 .58 

 

* Chi square p-value  
+
  Fisher’s exact test was used due to low cell count numbers 
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Table 4-4 Continued 
       

Variable Categories N BMI –  

Normal 

(N = 284) 

BMI- 

Overweight 

(N = 144) 

BMI- 

Obesity 

(N = 74) 

 Overall 

P-value* 

       
       
Serum Folate Quartile 1  125 48.8% 34.4% 16.8%  
Level Quartile 2 128 48.4% 34.4% 17.2%  
 Quartile 3 123 65.9% 21.1% 13.0%  
 Quartile 4 126 63.5% 24.6% 11.9%   0.03 
       
Triglycerides Optimal  355 66.2% 24.2%   9.6%  
 Normal    82 39.0% 36.6% 24.4%  
 Moderate    34 38.2% 41.2% 20.6%  
 High    31 12.9% 45.2% 41.9% < 0.01 
       
HDL Very Low    98 28.6% 41.8% 29.6%  
 Low  197 49.2% 32.5% 18.3%  
 Medium  111 71.2% 24.3%   4.5%  
 High    96 83.3% 12.5%   4.2% < 0.01

+ 

       
LDL Low 181 69.6% 21.6%   8.8%  
 Medium  196 51.5% 31.1% 17.4%  
 Borderline- High   79 44.3% 40.5% 15.2%  
 High    46 47.8% 26.1% 26.1% < 0.01 
       

* Chi square p-value  
+
  Fisher’s exact test was used due to low cell count numbers 

 

4.3.2 Relationship between LINE-1 DNA methylation and covariates 

The relationship between LINE-1 DNA methylation levels and covariates of interest 

was assessed using an F-test and a T-test. An F-test statistic was used to assess the overall 

association. The T-test was used to compare the mean percent LINE-1 methylation for each 

covariate category with the referent category. The corresponding means, difference in means 

with their 95% confidence interval and p-values are presented in Table 4-5. LINE-1 DNA 

methylation levels had a statistically significant association with sex and HDL. Females had 
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lower LINE-1 DNA methylation levels than males. Those with very low and low levels of 

HDL had higher LINE-1 DNA methylation in comparison with those with medium or high 

HDL levels.  

Overall, there were not statistically significant associations between LINE-1DNA 

methylation levels with physical activity and triglycerides. However, there were significant 

differences between one group compared to the referent group for LINE-1 DNA methylation 

level differences in physical activity and triglyceride levels. For physical activity, those in the 

highest quartile of METs had higher LINE-1 DNA methylation levels compared to those in 

the lowest quartile of METs. Participants in the middle two quartiles of physical activity had 

LINE-1 DNA methylation levels between those in the lowest and highest quartiles of 

physical activity, demonstrating an increasing pattern in LINE-1 methylation levels with 

increasing activity levels. LINE-1 DNA methylation levels were similar across the optimal, 

normal, and moderate levels of triglycerides. However, those in the high triglyceride category 

had a statistically significant higher LINE-1 DNA methylation level compared to the other 

categories. Overall, there were no statistically significant associations between LINE-1DNA 

methylation levels and age, ethnicity, smoking, alcohol consumption, serum folate, and LDL. 
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Table 4-5. Bivariate Relationships between LINE-1 DNA Methylation and Covariates.  

Variable Categories Mean DNA 

Methylation 

Level (%) 

Mean Change in 

Percent Methylation  

(95% CI) 

Categorical  

P-value* 

Overall 
P-value

+
 

 
     

Sex Male 85.92  Referent   
 Female 83.52 -2.39 (-2.92, -1.86) < 0.01 < 0.01 
      
Age 20 – 29 years 84.58 Referent   
 30 – 39 years 84.37 -0.21 (-0.91, 0.49)   0.55  
 40 – 49 years  84.55 -0.03 (- 0.70, 0.63)   0.92 

  
   0.82 

Ethnicity Caucasian 84.48 Referent   
 Asian 84.83  0.35 (-0.69, 1.39)   0.51  
 Other 84.57  0.09 (-1.22, 1.41)   0.89 

 
  0.80 
 

Physical 
Activity 

Quartile 1 84.01 Referent   
Quartile 2  84.55 0.53 (-0.26, 1.33)   0.19  
Quartile 3  84.50 0.49  (-0.30, 1.28)   0.23  

 Quartile 4 84.98 0.97 (0.18, 1.76)   0.02 
   

  0.12 

Smoking 
Status 

Never 84.67 Referent   
Past 84.10 -0.57 (-1.29, 0.14)   0.12  

 Current 84.34 -0.33 (-1.56, 0.49)   0.42 
   

  0.26 

Alcohol 
Consumption 

Less than 1 84.53 Referent   
1 – 3  84.40 -0.12 (-0.83, 0.58)   0.73  

(drinks/week) 4 – 6  84.75  0.23 (-0.68, 1.13)   0.62  
 7 – 9  84.41 -0.11 (-1.12, 0.89)   0.82  
 10 or more  84.56  0.03 (-0.92, 0.98)   0.95 

 
  0 .96 
 

Serum Folate  Quartile 1  84.76 Referent   
Level Quartile 2 84.49 -0.27 (-1.06, 0.53)   0.51  
 Quartile 3 84.49 -0.27 (-1.07, 0.53)   0.51  
 Quartile 4 84.30 -0.45 (-1.24,0.34)   0.26   0.74 
      
Triglycerides Optimal  84.41 Referent   
 Normal  84.46 0.05 (-0.72, 0.81)   0.91  
 Moderate  84.48 0.07 (-1.05,1.19)   0.90  
 High  85.78 1.37 (0.20, 2.54)   0.02   0.74 
      
      

* P-values based on T-test compared to referent category 
+ 

 P-values based on the F-statistic for the overall association 
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Table 4-5 Continued 
 

    

Variable Categories Mean DNA 

Methylation 

Level (%) 

Mean Change in 

Percent Methylation  

(95% CI) 

Categorical  

P-value* 

Overall 
P-value

+
 

      
      
HDL Very Low  85.31 Referent   
 Low  84.69 -0.62 (-1.38, 0.15)    0.12  
 Medium  83.97 -1.34 (-2.19, -0.47) < 0.01  
 High 83.95 -1.36 (-2.25, -0.47) < 0.01 < 0.01 
      
LDL Low  84.25 Referent   
 Medium  84.52 0.27 (-0.37, 0.92)   0.40  
 Borderline- High 85.04 0.79 (-0.05, 1.63)   0.07  
 High  84.56 0.31 (-0.73, 1.34)   0.56   0.33 
      

* P-values based on T-test compared to referent category 
+ 

 P-values based on the F-statistic for the overall association 

 

 

4.4 Relationship between BMI and LINE-1 DNA methylation 

A primary objective of this thesis was to examine the relationship between Body 

Mass Index and LINE-1 DNA methylation levels. The main analysis for this objective 

utilized a least squares regression model with LINE-1 DNA methylation regressed on a 

categorical representation of BMI. The normal BMI group was used as the referent category. 

Coefficients from this model represented the difference in mean percent LINE-1 DNA 

methylation between overweight and obese categories, and the normal category. Potential 

confounders of this relationship were identified by creating a parsimonious model from 

among the covariates. The final analysis examined the BMI-LINE-1 DNA methylation 

relationship while controlling for potential confounders. The design effect of recruitment 

centre was taken into account by including a random effects parameter for centre in each 

model.  
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4.4.1 Assessment of Confounding 

To assess confounding, a covariate model was generated, as describe in section 

3.7.2.1, using the step-wise backwards elimination method with a liberal p-value of 0.2. 

Table 4-6 shows the backward elimination process, where HDL was the first variable 

removed and ethnicity the last. The only covariate that met the criteria was sex with a p-value 

of <0.01. Therefore the covariate model only included the variable sex.  

Table 4-6. Covariate Model Selection Process.  

Variable F-Statistic P-Value Order of Elimination 
 

   
HDL 0.13 0.94 1

st
  

    
Triglycerides 0.20 0.90 2

nd
  

    
Serum Folate 0.50 0.69 

 
3

rd
  

Age 0.46 0.63 4
th

  
    
LDL 0.70 0.56 5

th
  

    
Physical Activity 0.72 0.54 6

th
 

    
Alcohol 0.91 0.46 7

th
  

    
Ethnicity 1.51 0.22 8

th
  

    
Sex 6.18 <0.01  

 

4.4.2 Modeled relationship of BMI and LINE-1 DNA Methylation 

The main analysis of the relationship between BMI and LINE-1 DNA methylation is 

presented in Table 4-7. BMI was not associated with LINE-1 DNA methylation levels while 

controlling for sex. Adjusted estimates for the overweight and obese BMI categories were 

small, less than one-tenth of the standard deviation and went in opposing directions compared 
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to the normal BMI category. These results did not support a relationship between BMI and 

LINE- DNA methylation levels.  

Sex was a strong predictor of LINE-1 DNA methylation levels with females having 

an average DNA methylation level 2.35% lower than males. An R
2
 value of 0.16 was 

primarily due to the relationship between sex and LINE-1 DNA methylation 

Table 4-7. Linear Regression Model with BMI and Sex. The crude model did not control for 

any covariates. The adjusted model controlled for the effect of sex, and the estimate, standard 

error, and p-values are provided. 

Variable Categories Crude 

Model*  

Adjusted 

Model* 

Standard 

Error  

F-

Statistic 

P-

Value 
 

      
Intercept  84.81 86.43 0.40   
       
BMI Normal  Referent Referent    
 Overweight  0.097 - 0.31 0.31   
 Obese 0.619   0.22 0.39   0.90  0.41 

 
Sex Male Referent Referent    
 Female - 2.33 - 2.35 0.27 74.79 <0.01 
       
* The models include a random effects parameter representing recruitment centre  

 

4.4.3 Assessment of Interaction 

To assess the third objective of the study, to determine whether there was an 

interaction between sex and BMI, an interaction term was added to the model. Results of this 

analysis are presented in Table 4-8. Each cell had a sufficient number of study subjects. The 

smallest cells had 36 and 38 subjects. The effect of overweight and obesity on LINE-1 DNA 

methylation is presented for males and females from this model. All coefficients are small 

(e.g. below 1%) and non-significant. Among males, overweight was associated with a 0.7% 

decrease in LINE-1 DNA methylation. Among females, obesity was associated with a 0.5% 
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increase in LINE-1 DNA methylation. Although different patterns were observed for males 

and females, all the estimates were close to the null value. The interaction term was not 

significant (p-value = 0.50) demonstrating that sex did not modify the relationship between 

BMI and DNA methylation levels.  

Table 4-8. Change in LINE-1 DNA Methylation Levels by BMI according to Sex 

Variable Number 

of Males 

Males P-value Number of 

Females 

Female P-value 

 
       

BMI Normal  95 Referent  189 Referent  
 Overweight  74 - 0.66 0.15 70 - 0.04 0.92 
 Obese 38 - 0.16 0.77 36   0.51 0.34 

 

 

4.4.4 Assumption Tests for Model 

The following analyses tested the basic assumptions of linear regression for this data. 

Homoscedasticity is the assumption of equal variance. The studentized residuals were plotted 

against the BMI categories (Figure 4-6). The variance was fairly equal across groups with 

slightly more variability in methylation values in the normal BMI category.   
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The normality assumption states that the error is normally distributed. A Q-Q Plot, a 

plot of the residual quantiles verses normal probability quantiles, was generated. The plot 

showed a relatively straight diagonal line which indicates that the normality assumption is 

most likely met. 

 

Figure 4-7. Normality Assessment. Q-Q plot was generated to assess the normality assumption. 
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Figure 4-6. Homoscedasticity Assessment. Residuals were plotted against BMI categories to 

assess the homoscedasticity assumption. 
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Cook’s D plot was generated to check for outliers. All of the values for Cook’s D 

were considerably below 1; the highest value was less than 0.035. This indicates that no 

single observation was driving the parameter estimate.  

4.5 Sensitivity Analyses 

4.5.1 Logistic Regression with LINE-1 DNA Methylation as a Dichotomous Variable  

The objective was to examine BMI as a potential determinant of LINE-1 DNA 

hypomethylation and hypermethylation because increased risk for adverse health events may 

act through increased or decreased methylation levels. Although there is great interest in 

DNA methylation as a determinant of chronic disease, there is still limited understanding of 

DNA methylation as a pathologic entity. As a result, there is no definitive way to 

conceptualize this outcome for analysis. The sensitivity analyses considered dichotomous 

representations of LINE-1 DNA methylation for hypomethylation and hypermethylation. Sex 

specific cut-points for the lowest and highest 15 percent of methylation were used to define 

events for each dichotomous outcome. The bottom 15 percent of methylation values for each 

sex defined DNA hypomethylation, representing values below cut-points of 82.28 percent for 

males and 80.88 percent for females LINE-1 DNA methylation. The top 15 percent of 

methylation values for each sex defined DNA hypermethylation, representing values above 

cut-points of 89.29 percent for males and 86.07 percent for females LINE-1 DNA 

methylation. Since sex was a potential effect modifier of the relationship between BMI and 

LINE-1 DNA methylation levels, an interaction term was included in the model to assess the 

sex specific relationship. The odds ratio was used as a measure of effect and logistic 

regression employed to control for potential confounders.  
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A covariate model was generated using backwards elimination for the sensitivity 

analysis for DNA hypomethylation. HDL met the criteria of determinants of hypomethylation 

and was included in the logistic model as a potential confounder. A logistic model was 

generated with HDL, sex, and an interaction term between sex and BMI. The effect of 

overweight and obesity on LINE-1 DNA methylation is presented for males and females 

from this model in Table 4-9. Although the interaction between BMI and sex was not 

statistically significant (p-value= 0.15) the odds ratios were in different directions. Males in 

the overweight and obese categories were more likely to have DNA hypomethylation 

outcome (OR= 1.28 and 1.44 respectively) compared to those with a normal BMI. While 

females in the overweight and obese categories were less likely to have hypomethylation (OR 

= 0.92 and 0.15 respectively).  

Table 4-9. Logistic Regression Model for LINE-1 DNA Hypomethylation 

Variable Odds Ratio for 

Males (95% CI)* 

P-value Odds Ratio for 

Females (95% CI)* 

P-value 

 
     

BMI Normal  Referent  Referent  
 Overweight  1.28 (0.53, 3.08) 0.63 0.92 (0.42, 2.01) 0.84 
 Obese 1.44 (0.50, 4.13) 0.42 0.15 (0.02, 1.18) 0.08 
      

*Model adjusted for HDL and effects of centre 

 

A covariate model was generated using backwards elimination for the sensitivity 

analysis for DNA hypermethylation. Smoking status met the criteria of determinants of 

LINE-1 DNA hypermethylation and was included in the logistic model as a potential 

confounder. A logistic model was generated with smoking status, sex, and an interaction term 

between sex and BMI. The effect of overweight and obesity on LINE-1 DNA methylation is 

presented for males and females from this model in Table 4-10. Results showed a pattern of 
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increasing effect of BMI on LINE-1 DNA hypermethylation for females but not males. Males 

in the overweight category were less likely to have hypermethylation (OR= 0.63) and males 

in the obese categories were more likely have hypermethylation outcome (OR= 1.38) 

compared to those with a normal BMI. While females in the overweight and obese categories 

were more likely to be hypermethylated (OR = 1.23 and 1.92 respectively) compared to those 

with a normal BMI. Although differences were observed for males and females, the 

interaction term was not statistically significant (p-value= 0.43). 

Table 4-10. Logistic Regression Model for LINE-1 DNA Hypermethylation 

Variable Odds Ratio for 

Males (95% CI)* 

P-value Odds Ratio for 

Females (95% CI)* 

P-value 

 
     

BMI Normal  Referent  Referent  
 Overweight  0.63 (0.28, 1.39) 0.26 1.23 (0.55, 2.76) 0.61 
 Obese 1.38 (0.61, 3.12) 0.43 1.92 (0.81, 4.57) 0.13 
      

*Adjusted for smoking status and effect of centre 

4.5.2 Covariates Potentially in Biologic Pathway 

A priori, it was determined that if a significant association was observed between 

BMI and LINE-1 DNA methylation, covariates of interest, potentially on the biologic 

pathway between BMI and DNA methylation would be assessed further. However, this 

assessment was not necessary based on the fact that these potential covariates were not 

related to DNA methylation. For example, when comparing the crude to the adjusted logistic 

regression results there was no difference between the risk estimates when HDL was 

included suggesting that HDL was not influencing the relationship of interest.   
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Chapter 5 

Discussion and Conclusions 

5.1 Summary of Findings 

The objectives of this study were to quantify and describe LINE-1 DNA methylation 

in leukocytes in a large population sample, to examine the relationship between Body Mass 

Index (BMI) and LINE-1 DNA methylation levels in this study sample, and to investigate sex 

as a potential effect modifier of the relationship of interest.  

Validity of the novel method used to measure LINE-1 DNA methylation 

measurement was considered. Optimization of annealing temperature for the LINE-1 DNA 

methylation assay ensured that the primers were not preferentially replicating methylated 

versus unmethylated DNA template. Further, a statistical analysis of the Cp values 

demonstrated that the amplification cycle did not predict percent LINE-1 DNA methylation, 

confirming that PCR bias was not a concern. Since it was difficult to quantify the precise 

amount of bisulfite converted DNA used for each methylation analysis it was important to 

assess whether the starting quantity of BSC DNA template influenced the methylation 

results. Experiments demonstrated that variability in the starting amount of BSC DNA 

template did not influence the percent LINE-1 DNA methylation level obtained.  

Statistical assessment of LINE-1 DNA methylation measurements showed that it was 

a reliable measure. The inter-assay variation was relatively small with a coefficient of 

variation of 1.71 percent and the intra-assay variation was also relatively small with a 

coefficient of variation of 0.87 percent.  
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LINE-1 DNA methylation levels were normally distributed around a mean of 84.52% 

and a standard deviation of 3.19%. For the main analysis, a step-wise backward elimination 

approach with a liberal p-value was used to assess potential confounders with sex being the 

only significant predictor of DNA methylation. BMI was not significantly associated with 

LINE-1 DNA methylation levels after controlling for sex. The adjusted linear regression 

model did not show any trend in response to increasing BMI. The differences in mean 

percent LINE-1 DNA methylation levels between BMI categories were small for the 

overweight (-0.31%) and obese (0.22%) compared to the referent normal BMI category.  

Sex was not found to be an effect modifier of the relationship between BMI and 

LINE-1 DNA methylation levels in the linear regression model. All coefficients in the model 

were small (e.g. below 1%) and non-significant. 

In addition, sensitivity analyses were conducted with the bottom 15% of methylation 

values for each sex considered to be hypomethylated and the top 15% of methylation values 

for each sex considered to be hypermethylated. The sensitivity analysis for DNA 

hypomethylation used an adjusted logistic regression model controlling for HDL and did not 

find a statistically significant relationship between BMI and DNA hypomethylation. The 

pattern of adjusted odds ratios for DNA hypomethylation showed decreasing odds ratios for 

females and increasing odds ratios for males with increasing BMI categories. The sensitivity 

analysis for DNA hypermethylation used an adjusted logistic regression model to control for 

smoking status and did not find a statistically significant relationship between BMI and DNA 

hypermethylation. The pattern of odds ratios for DNA hypermethylation showed increasing 

odds ratios for females with increasing BMI categories but no pattern in the odds ratios for 
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males. These sensitivity analyses lend support to the hypothesis that the influence of BMI on 

DNA hypomethylation and hypermethylation may be modified by sex. 

5.1.1 Comparison to Literature – DNA Methylation Levels 

Aberrant DNA methylation as an important epigenetic modification of DNA has 

recently emerged as a topic of increasing interest in epidemiologic studies. Published studies 

vary in the methods used to measure DNA methylation, the type and location of repetitive 

sequences studied, and the number of CpG sites examined. As a result, direct comparisons of 

average DNA methylation levels across studies are problematic. The mean LINE-1 DNA 

methylation was higher in this study sample compared to other studies with a comparable 

standard deviation. However, the coefficient of variation for the intra-assay reproducibility 

was much smaller in this study compared to the literature.  

When comparing results, consideration should be given to the use of different 

repetitive sequences measured, for example whether a study used the repetitive sequence 

LINE-1 or Alu. Both of these types of repeats may represent global DNA methylation levels 

but they are not equivalent measures. Even within the repetitive sequences themselves, 

different regions may be methylated at different locations and contain varied numbers of 

CpG sites. The exact CpG sites being measured could potentially impact upon the findings. 

Also, the varying methods used to measure DNA methylation levels make comparisons more 

difficult since each method may be more susceptible to different forms of bias and have 

different levels of reliability.  

In the literature, many studies do not provide descriptions of DNA methylation levels 

as a continuous variable. The most appropriate comparison for LINE-1 DNA methylation 

levels was with the Zhu et al. paper which was a combined analysis of 5 studies. Zhu et 
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al.(94) provided descriptive information of LINE-1 DNA methylation levels measured using 

pyrosequencing in leukocyte DNA. The means for the 5 studies varied from 71.7% to 80.2% 

and the standard deviations were provided. The smallest standard deviation was 1.0 and the 

largest standard deviation was 6.2 (94). Also, methylation measurements were completed in 

duplicates and the within sample (intra-assay) coefficient of variation was 5.3 % (94). In 

comparison, the mean DNA methylation level for this thesis project was slightly higher at 

84.52% and the standard deviation (3.19) was in the middle of the range found by Zhu et al. 

However, the intra-assay coefficient of variation for this thesis was much smaller at 1.71%, 

indicating better agreement between triplicate values.  

A strength of this study is the reliability of the High-Resolution Melt (HRM) method 

used to measure percent LINE-1 DNA methylation. The intra-assay variation had a 

coefficient of variation of 1.71% which implies precision with this method for quantifying 

LINE-1 DNA methylation. Consequently, this study would have a smaller degree of 

misclassification making it easier to be able to detect whether or not an association truly 

exists. In the Zhu et al. study the coefficient of variation of 5.3% is fairly large in comparison 

to the standard deviations. Unfortunately, large coefficients of variation are currently 

common in the literature. Thus, even if previous studies have not found a significant 

association between potential determinants and DNA methylation levels this may have 

resulted from the imprecision in DNA methylation measurement. This study is contributing 

to the existing literature by examining the relationship between BMI and percent LINE-1 

DNA methylation using a more precise and reliable measure of LINE-1 DNA methylation. 
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5.1.2 Comparison to Literature – Relationship between BMI and LINE-1 DNA 

Methylation 

Overall, this study did not find a relationship between BMI and LINE-1 DNA 

methylation levels, which is consistent with the existing literature. Five studies have 

examined the relationship between BMI and global DNA methylation using either a genome-

wide measure or a measure of repetitive element methylation levels. Previous findings in the 

literature were inconsistent with study results ranging from a significant association between 

BMI (along with waist circumference and body fat percentage) and DNA hypomethylation 

(145) to a positive relationship between higher BMI and higher DNA methylation level 

(111). However, most studies did not find a significant relationship between BMI and DNA 

methylation levels (16,94,113) 

These five previous studies included healthy subjects comparable to the study 

population of this thesis. However, different techniques were used to measure DNA 

methylation levels of different repetitive sequences in these studies. Three studies used 

pyrosequencing to measure methylation in LINE-1 DNA, one used LUMA to measure 

methylation in LINE-1 DNA, and one study used MethyLight to measure methylation in the 

Alu and Sat2 repetitive sequences (16,94,111,113,145). It is possible that findings may have 

varied based on the repetitive elements that were examined. The study that reported a 

positive relationship between BMI and DNA methylation levels measured DNA methylation 

levels of Alu repetitive sequences (111). It is possible that BMI may have a different 

relationship with DNA methylation dependent on the repetitive element studied. Overall, this 

study is consistent with the literature which has not found an association between BMI and 

DNA methylation levels in cross-sectional study designs.  
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The null findings in this study may be due to the fact that the specific LINE-1 DNA 

methylation region used did not represent the critical location of global DNA methylation 

detection. For this project only 8 CpG sites within the LINE-1 sequence were used to 

quantify percent methylation. A sufficient number of methylation CpG sites or the most 

relevant CpG sites may not have been included in the methylation measurement. 

Furthermore, LINE-1 repetitive sequences might not adequately represent global DNA 

methylation levels. Ideally, a study might include Alu and Sat2 repetitive sequences as well.  

5.2 Methodological Considerations 

The potential for measurement error, uncontrolled confounding, and bias to influence 

the study observations are addressed in this section. Both the exposure of interest, BMI, and 

the outcome, LINE-1 DNA methylation levels, will be discussed. Overall, the exposure and 

outcome are susceptible to the effects of non-differential misclassification which would result 

in the effect estimates being biased toward the null.  

5.2.1 Study Population 

The prevalence of obesity in the study sample was lower than the prevalence of 

obesity in the general Canadian population. Since the study participants were healthy 

volunteers recruited from three university or hospital sites, who reported no history of 

diseases such as diabetes, it was expected that the prevalence of obesity in the study sample 

would be lower than the general population. In this study where participants were aged 20 to 

50 the prevalence of obesity was 15% which is lower than the prevalence estimated based on 

the Canadian Health Measures Survey, where the prevalence of obesity was approximately 

20% for those 20 to 39 years of age (21). Volunteers were likely to be healthier than the 
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general population. Therefore it was not anticipated that the BMI distribution in the study 

population would be representative of the general Canadian population. Furthermore, the 

distribution of LINE-1 DNA methylation found in this study may not have represented the 

distribution of DNA methylation in the general population. However, since the underlying 

relationship being examined is a biologic relationship and subjects would not have prior 

knowledge of their LINE-1 DNA methylation level, it is unlikely that the volunteer nature of 

the participants would bias the results of the primary hypothesis.  

However, it is recognized that a reduction in the variability of both BMI and LINE-1 

DNA methylation due to the healthy population sample (in comparison with the general 

population) may have reduced the statistical power of this study to identify relationships at 

the extremes of these distributions.  

5.2.2 Exposure Assessment 

The larger study collected information regarding each participant’s current height and 

weight in order to calculate BMI. It is unknown whether their BMI was stable over time and 

what the ideal time window to capture BMI would have been in relation to LINE-1 DNA 

methylation. However, it was assumed that BMI likely remained fairly stable and if changes 

had occurred it would most likely have resulted in random misclassification.  

A primary concern with self-reported data, such as height and weight used to derive 

BMI, is its validity. Validation studies have shown that self-reported and measured height 

and weight are highly correlated (Spearman r>0.9). Also, self-reported height and weight 

have a high specificity and sensitivity when compared with measured BMI values (30). This 

study sample is comprised of a younger and healthier sample of adults for whom self-

reported measures would be considered valid. However, there is the potential for non-
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differential systematic bias to occur when self-reported height and weight are used to 

calculate BMI as a measure of body composition. It is likely that there would have been a 

systematic bias due to the tendency for individuals to under-report their weight. This would 

result in non-differential misclassification of exposure (BMI) since underreporting of weight 

is unlikely to be related to DNA methylation levels. The consequence of this 

misclassification would tend to bias the effect estimates towards the null. 

Since BMI is an easily obtainable and widely used measure it is beneficial to examine 

the relationship of interest using BMI. Ideally, a better measure of body fat such as body fat 

percentage and even the type of body fat would permit a more rigorous investigation of the 

potential health consequences associated with being overweight or obese. Using BMI as a 

proxy measure of body composition is practical but does not necessarily have the sensitivity 

to prevent misclassification. This misclassification would result in the effect estimates 

between categories appearing more similar and may prevent observing a relationship when 

one truly exists.  

5.2.3 Outcome Assessment 

The method used to quantify DNA methylation levels was assessed to determine the 

reliability within individuals and between plates. With a coefficient of variation of 1.71% 

within subjects (intra-assay variation) and 0.87% for the internal between plates (inter-assay 

variation) this data represents a highly reproducible and precise assay to measure methylation 

levels. There is a small amount of random error in the measurement that is considerably 

lower than other studies have presented.  

In the design and optimization of the HRM method used to quantify DNA 

methylation, there were attempts to ensure that the method was not biased. Tse et al. 
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developed the primers for a region that was a conserved sequence of 8 CpG sites within the 

LINE-1DNA sequence (150). This is an important feature to ensure that all products are the 

same length because in order that the change in the melt profile can be attributed to different 

base-pairings and not due to different sized products. Optimization of the annealing 

temperature permitted the primers to bind with no preference to complementary methylated 

or unmethylated template. The dilution assay of the starting quantity of DNA template 

showed that this did not influence the percent methylation level obtained. This permitted the 

acceptance of a small amount of variability in the starting DNA template. Furthermore, in 

order to ensure that this variability in the amount of DNA was not associated with 

methylation levels, Cp values were assessed as a potential determinant of methylation levels. 

Cp values were not significantly associated with methylation levels.   

Samples of whole blood were used as starting material for the laboratory 

experiments. All blood samples were drawn between 8 and 10am after an overnight fast. This 

prevented any dietary habits immediately preceding blood draw from impacting on the DNA 

methylation measurement. Leukocyte DNA was extracted from the whole blood sample. 

Leukocyte DNA is composed of DNA from many different types of white blood cells. It is 

possible that not using one cell type, such as lymphocytes, or controlling for the ratio of 

different cell types may have contributed to misclassification. One study assessed the impact 

of white blood cell type on DNA methylation levels and found that a small portion of the 

methylation heterogeneity between individuals was attributable to the overall cell 

composition of leukocytes (73).  

Since DNA methylation is an emerging field of research, the determinants of DNA 

methylation levels and factors that may alter DNA methylation levels are still largely 
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unknown. Therefore it is possible that there are unknown confounders of the relationship of 

interest that were not controlled for in the study.  

5.3 Limitations 

There are several limitations to this study which may have impacted on the validity of 

this investigation of the relationship between BMI and LINE-1 DNA methylation. These 

include the underlying study design, available biologic medium, validity of the DNA 

methylation measure, and uncontrolled confounding.  

An inherent limitation is based on the cross-sectional study design. With a cross-

sectional study design temporality could not be assessed. However, the study design was 

appropriate in this context for a number of reasons. First, there is no evidence to suggest that 

LINE-1 DNA methylation levels would influence BMI. Second, an individual’s BMI is 

suggested to remain fairly stable over a number of years (169,170) and tends to increase 

gradually in adulthood. Since this is one of the first studies of this nature it is appropriate to 

determine whether or not a relationship exists prior to investigating the association in a 

prospective manner. 

The accessibility of blood makes leukocytes an ideal location to detect an association. 

Leukocytes are composed of all types of white blood cells. It is possible that there is 

misclassification of DNA methylation levels based on differences in the proportion of white 

blood cell types comprising the blood sample between individuals. Further, it is unknown 

whether LINE-1 DNA methylation levels in leukocytes would be representative of 

methylation status of other body tissues, such as the colon. Although a significant 

relationship between BMI and LINE-1 DNA methylation levels in leukocytes did not exist in 
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this study population, it is possible that BMI would be a predictor of DNA methylation levels 

in other tissues or white blood cells.  

The determinants of DNA methylation levels are still largely unknown. There is the 

potential for uncontrolled confounding if this study did not account for unknown strong 

predictors of DNA methylation levels.  

DNA methylation measurement is a new and rapidly expanding area of research. 

Although the technique used to measure DNA methylation (HRM) was reliable, the validity 

of the method used for this study was not tested against a gold standard. Also, DNA 

methylation is not well understood as a pathologic entity. It is unknown what would 

constitute a meaningful change in DNA methylation and what would be the most appropriate 

categorization or statistical analysis to examine methylation levels.  

There was a moderate amount of variability in LINE-1 DNA methylation levels 

within this volunteer sample. However, given that these were all healthy subjects, it may be 

that a general population sample would have had a greater range of DNA methylation values 

which would have provided a more robust analysis of this thesis topic.  

5.4 Strengths 

The objective of the larger study was to examine lifestyle determinants of the One-

Carbon Metabolism Cycle. A strength of this thesis study was that it included the assessment 

of many potential determinants of DNA methylation and that materials were collected in a 

thorough manner to assess methylation capacity.  

Epigenetics is an emerging field of research, in which there is much interest in DNA 

methylation in order to understand biologic mechanisms regarding how environmental 
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exposures influence disease etiology. This study will contribute to the current literature that 

consists of only a few studies examining determinants of DNA methylation levels.  

A benefit of investigating a biologic mechanism is that the response rate and random 

exclusion of participants from the larger study are not important given that selection bias was 

not a primary concern because individuals were unaware of their DNA methylation levels. 

For selection bias to occur in this study, a subject’s decision to participate in the study would 

have to be related to both exposure and outcome status. This is not possible because DNA 

methylation levels were unknown to potential participants.  

Traditional epidemiologic studies are limited in their ability to identify small relative 

risks associated with environmental and lifestyle exposures, and disease outcomes, 

particularly diseases with long latencies between exposure and outcome. The examination of 

an intermediate event such as global DNA methylation, that follows an exposure and 

precedes an outcome on a causal biologic pathway, provides several critical advantages in the 

investigation of exposure-outcome relationships. These include: a shorter latency period 

between exposure and the intermediate event (as opposed to the health outcome), an event 

that may be more frequent than the outcome, a study population of relatively healthy 

subjects, and a continuous outcome measure providing greater statistical power (171). Thus, 

if a causal exposure-outcome relationship exists that is mediated through an intermediate 

endpoint, then the observed relationship will be stronger between the exposure-intermediate 

as compared to the association observed for a corresponding exposure-outcome relationship 

(171).  
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5.5 Generalizability 

A benefit of studying biologic mechanisms is that the findings are generalizable to 

similar populations. If this was a valid study, then the relationship would likely hold in most 

populations with a similar range of ages and BMI values. One potential challenge to the 

generalizability of these findings is that there may be an interaction with a factor that differs 

across populations, for example ethnicity. In terms of varying ethnic populations, a different 

relationship may exist between BMI and DNA methylation due to the influence of genetic 

factors on this relationship.  

5.6 Conclusion 

Biologic mechanisms linking obesity to increased incidence of adverse health events, 

such as cancer and CVD, are not well understood. The aim of this study was to investigate 

whether DNA methylation level changes may be a mechanism through which this increased 

risk was conferred. The research is relevant because changes in DNA methylation levels are 

recognized as a component in the etiology of various cancers and coronary artery disease. A 

significant relationship between BMI and LINE-1 DNA methylation levels was not observed 

in this study using either linear or logistic regression. The sensitivity analysis for DNA 

hypomethylation showed a pattern of decreasing odds ratios in females and a pattern of 

increasing odds ratios in males with increasing BMI categories. However, the interaction 

variable did not reach statistical significance. The sensitivity analysis for DNA 

hypermethylation showed a pattern of increasing odds ratios in females and no pattern in the 

odds ratios for males with increasing BMI categories. Overall, further investigation is 

warranted to examine if BMI as a proxy for adipose tissue acts as a determinant of DNA 

methylation levels and whether sex is an effect modifier of the relationship.  
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5.7 Contributions and Implications 

Contributions of this thesis research include the addition of LINE-1 DNA 

methylation measurements to the existing database for the larger study. Further analyses can 

be undertaken to examine genetic or molecular factors in relation to the LINE-1 DNA 

methylation values obtained.  

This thesis provides insight into a potential determinant of DNA methylation (i.e., 

BMI) which may mediate the risk for adverse outcomes. DNA methylation is an emerging 

field of research and unraveling the environmental determinants will assist in understanding 

underlying biologic mechanism for disease occurrence. Using a novel method to measure 

DNA methylation, this study was able to capture variability in LINE-1 DNA methylation 

levels between individuals. This research will contribute to the existing scientific literature by 

providing a description of LINE-1 DNA methylation levels, quantified using a reliable and 

precise method.  

Very few studies have examined lifestyle factors as determinants of methylation 

levels. This study provided information regarding the relationship between BMI and global 

DNA methylation levels, through the measurement of LINE-1 DNA methylation levels, 

which can be applied to understanding determinants of DNA methylation levels. Since DNA 

methylation is modifiable, eventually, clinical applications may be possible to prevent or 

reverse changes in DNA methylation levels. Additionally, if changes in methylation levels 

are detectable in blood cells, they may represent a potential biomarker to identify individuals 

at high risk for certain diseases.  
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5.8 Future Directions 

Methods to accurately measure global and gene-specific DNA methylation are 

evolving, which will allow epidemiologic studies to investigate determinants of changes in 

DNA methylation levels both globally and at gene-specific locations. Additionally, changes 

in DNA methylation should be examined longitudinally in order to examine the extent to 

which DNA methylation levels are modifiable and hereditary. Global DNA methylation may 

have potential predictive and prognostic capability. However, much more research is required 

to understand the biologic mechanisms and utility of DNA methylation levels in these 

settings. For example, examination of the correlations and patterns of DNA methylation 

levels of various organs, tissues, and progenitor cells would assist in the comprehension of 

cellular differentiation and when cells might be susceptible to environmental influences.   

Global DNA methylation is one component of an epigenetic profile which interacts 

with an individual’s genetic profile and environmental exposures. Histone type and 

acetylation levels interplay with DNA methylation in the conformation of chromosomal 

structure. Gene-specific DNA methylation acts in the regulation of gene expression that may 

interact with polymorphisms. Basic science and epidemiological research in the field of 

epigenetics needs to continue to begin to unravel the complexity of disease etiology.   
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Appendix A 

DNA Isolation Protocol 

This isolation protocol is for whole blood comprised samples. The isolation protocol was based 

on the 5PRIME ArchivePure DNA Purification System. 

Sample Preparation: 

1. Remove sample whole blood 250mL from freezer and thaw quickly. Once thawed, 

immediately place samples in ice until proceeding with DNA isolation. 

Cell Lysis: 

2. Add 750mL of Red Blood Cell (RBC) Lysis Solution to 250mL of whole blood in a 1.5ml 

microcentrifuge tube. Invert to mix and incubate 5 minutes at room temperature. Invert 

again at least once during incubation. 

3. Centrifuge at 3,500 x g for 5 minutes. 

4. Pour off supernatant leaving behind a visible brown pellet and approximately 100mL of 

residual liquid. 

5. Vortex tube vigorously to resuspend the cells in the residual liquid. 

6. Dispense 250mL of Cell Lysis Solution and 2mL of Protinase K into each tube of 

resuspended cells. Vortex at high speed for 10 seconds. 

7. Incubate in a shaker at 56ºC overnight. 

Protein Precipitation: 

8. Cool sample by placing tube into an ice bath for 5 minutes. 

9. Dispense 112.5mL of Protein Precipitation Solution into each tube. 

10. Vortex samples vigorously at high speed for 20 seconds, in order to create a 

homogeneous solution. 
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11. Centrifuge at 10,000 x g for 5 minutes. The precipitated proteins will form a tight dark 

brown pellet.  

DNA Precipitation:  

12. Pour the supernatant containing the DNA (leaving behind the precipitated proteins) into a 

clean 1.5ml tube containing 250mL of 100% isopropanol.  

13. Mix the sample by inverting gently in a tube rack 50 times. 

14. Centrifuge at 14,000 x g for 5 minutes the DNA will be visible as a white pellet. 

15. Pour off supernatant and drain tube briefly on clean absorbent paper. 

16. Dispense 250mL of 70% ethanol into each tube and invert gently to wash the DNA pellet. 

17. Centrifuge at 14,000 x g for 1 minute. Carefully pour off the enthanol. 

18. Invert and drain the tube on clean absorbent paper and dry on heating block for 5 

minutes. 

DNA Hydration: 

19. Add 60mL of Hydration Solution and gently vortex. 

20. Rehydrate DNA by incubating at 56ºC overnight in a shaker. The tube is gently vortexed 

a couple of times to aid in the dispersing of the DNA. 

21. Sample is centrifuges and then stored at -20ºC. 
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Appendix B  

Bisulfite Conversion Protocol 

This bisulfite conversion protocol is based on the sodium bisulfite conversion of unmethylated 

cystosines in DNA from the EpiTect Bisulfite Handbook from Qiagen. 

Bisulfite Conversion: 

1. To a 200mL PCR tube, add 20mL of DNA at 100ng/mL. Then add 85mL of Bisulfite Mix 

(stored at -20ºC) and then 35mL of DNA Protect Buffer (stored at 2-4ºC). Note: when the 

DNA Protect Buffer is added it should turn from green to blue. 

2. Close the tubes and centrifuge the reactions thoroughly. 

3. Place tubes (maximum 20) in thermal cycle and use program ‘bisulfite’. This program is 

outlined in the following table: 

Step Time Temperature 

Denaturation 5 minutes 95ºC 

Incubation 25 minutes 60ºC 

Denaturation 5 minutes 95ºC 

Incubation 85 minutes 60ºC 

Denaturation 5 minutes 95ºC 

Incubation 175 minutes 60ºC 

Hold Indefinite 20ºC 

 

Cleanup of converted DNA: 

4. Briefly centrifuge the tubes and transfer the complete bisulfite reaction into a 1.5ml 

microcentrifuge tube. 
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5. Add 560mL of BL Buffer to each sample. Vortex for 10 seconds and then centrifuge at 

14,000 x g for 1 minute. 

6. Label EpiTect columns and transfer mix into column. Centrifuge the spin column at 

12,000 x g for 1 minute and discard the flow-through. 

7. Add 500mL of BW Buffer to each column and then centrifuge at 12,000 x g for 1 minute. 

Discard the flow-through. 

8. Dispense 500mL of BD (stored at 2-4ºC) buffer without transferring any particulates and 

incubate spin columns at room temperature for 15 minutes. 

9. Centrifuge columns at 14,000 x g for 1 minute and discard the flow-through. 

10. Dispense 500mL of BW Buffer, centrifuge at 14,000 x g for 1 minute, and discard flow-

through. 

11. Repeat step 10. 

12. Centrifuge the spin columns for 1 minute to remove any residual liquid. 

13. Spin columns were placed open into a lidless 1.5ml microcentrifuge tube onto a 56ºC 

heating block and incubated for 5 minutes. 

14. Spin columns are placed into new labeled 1.5ml microcentrifuge tubes.  

15. Dispense 20mL of EB Buffer onto the membrane of the column and centrifuge at 14,000 

x g for 1 minute. 

16. Repeat step 15 twice to increase the potential yield.  

17. Store at -20ºC. 
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