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Abstract 

Objectives: We wanted to both develop a novel warning system for cold weather related injuries 

in Ontario and make preliminary comparisons between this new method and the existing method. 

Further, we aimed at conducting a spatiotemporal analysis of seasonal influenza in Ontario to 

better understand the diffusion of this costly annual illness.  

Methods: To develop the new cold related warning system; we used Spearman and Pearson 

correlations, cross-correlation functions and variants of Shewhart control charts, which are forms 

of aberration detection methods. To conduct the spatiotemporal analysis, we used cyclic 

regression, colloquially known as Serfling regression, as well the ubiquitous Fourier 

periodogram. Further, newer wavelet methods were applied to better understand the diffusion of 

seasonal influenza.  

Results: We found weak and moderate negative correlations between daily meteorological 

variables and daily counts of cold related injuries in the public health units of interest. Further, 

we found results suggestive of an acute relationship between exposure to cold temperatures and 

cold injury, rather than a lag relationship. Our new method looks promising when compared to 

the old method, we feel prospective comparisons will demonstrate an increase in specificity and 

sensitivity.  

A general northwest to southeast spread of seasonal influenza in Ontario was observed by the 

separate methods of analysis used. Additionally, it became evident that implementing Serfling 

curves in areas of Ontario could be beneficial in determining the official start of the flu season 

and whether excess cases of influenza are being observed. 

Conclusion: The current cold weather warning system employed in Ontario can be improved 

upon, the addition of aberration detection methods may help. Further, the diffusion of seasonal 
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influenza in Ontario occurs from the northwest to the southeast, thus, we recommend vaccination 

campaigns follow a similar pattern.  
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Chapter 1 

Introduction 

1.1 Background 

Although cold weather injuries are a real concern in Ontario, they do not receive as much 
research as we expected. It’s unclear the extent of morbidity each year due to cold weather 
injuries in Ontario, but it is obvious that it is non-zero. Further, since these injuries are 
completely avoidable, a reduction of morbidity is easily attainable by proactive warning systems. 
Such systems would benefit the general population since they would reduce the burden on 
healthcare due to injuries caused both directly and indirectly by cold weather exposure.  
 
Seasonal influenza results in considerable morbidity and mortality worldwide with an estimated 
1 million deaths annually [14]. No estimates on the morbidity and mortality in Ontario were 
found, but it is likely that they are very significant. Further, this illness results in time off of 
school and work; thus, it has a large impact on society beyond just the morbidity and mortality. 
Vaccines exist for seasonal influenza and so understanding the spatiotemporal evolution of this 
malady across Ontario is essential and allows for preventive measures to be put into place.  
 
1.2 Objectives  
 
The main objective of our work was twofold; first, we wanted to develop a better warning 
system for cold related injury in Ontario. The current system relies only on meteorological 
variables and it is unclear whether these can reliably predict cold related injuries. Second, we 
desired a better understanding of the spatiotemporal diffusion of seasonal influenza in Ontario, 
doing so should lead to more informed vaccination campaigns and preparation.  
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Chapter 2 
 
The Application of Aberration Detection Methods to Cold 
Weather Injury in Ontario 
 
2.1 Introduction 
 
The application of aberration detection methods to public health data has typically been 
constrained to monitoring counts of infectious diseases [9]. However, these methods are 
increasingly being applied to counts of chronic disease and injury. Kingston, Frontenac and 
Lennox & Addington (KFL&A) Public Health has access to daily counts of cold weather related 
injuries, among other injuries and diseases, for 127 hospitals in Ontario via the Acute Care 
Enhanced Surveillance (ACES) network. Traditionally, warnings for frostbite and other cold 
related injury have been based on meteorological data, yet this does not make use of any injury 
specific surveillance data collected. We aimed at employing methods from the Early Aberration 
Reporting System (EARS) in conjunction with meteorological data to improve reporting and 
warning systems for cold weather related injury in Ontario. 
 
Cold weather injury is a collective diagnosis that is composed of both frostbite and hypothermia, 
as well as other injuries sustained either directly or indirectly due to an individual being exposed 
to cold temperatures. Upon an individual arriving in the emergency department, a chief 
complaint will be attached to their visit. We had access to these data via ACES, but there are 
some probable limitations. It isn’t clear whether health seeking behavior for cold related injuries 
is homogenous across the areas studied, we would hypothesize that Toronto would see markedly 
less cases of reported cold related injury due to underreporting by vulnerable populations. 
Further, there is no feasible way to determine the percentage of cold weather injuries captured by 
the ACES data since no overall background rate is known.  
 
 
2.2 Methods 
 
Cross-correlation functions quantify the correlation between two time series at integer lag values. 
As usual, the value is bounded between -1 and 1; such functions allow us to determine whether a 
lag relationship exists amongst two time series. These functions look similar to the common 
autocorrelation function used in time series analysis; however, they are generalized to 
incorporate a second time series. We define cross-correlation functions in the following way: 
 

𝜌!" 𝜏 :=
𝔼[ 𝑋! − 𝜇! 𝑌!!! − 𝜇! ]

𝜎!𝜎!
 

 
where 𝑋 and 𝑌 are the given time series, 𝔼 is the conventional expectation operator and 𝜏 is the 
given lag value. Further, 𝜇! and 𝜇! are the means of time series 𝑋 and 𝑌, respectively, while 𝜎! 
and 𝜎! are the standard deviations.  
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Statistical Process Control (SPC) methods, originally developed to monitor and control industrial 
processes, have been used in the surveillance of public health data [15]. More specifically, 
variants of Shewhart control charts have been adopted as reliable aberration detection methods 
for public health surveillance where limited historical data is available [5]. The 𝐶!, 𝐶! and 𝐶! 
methods, developed by the Centers for Disease Control and Prevention (CDC), are examples that 
show increasing sensitivity [8].   
 
These methods use 7-day rolling averages and standard deviations to standardize the daily count, 
which in turn allows the use of quantiles to look for statistically significant counts, given a 
significance level 𝛼.  
 
 𝐶! 𝑡 ≔ ! ! !!!(!)

!!(!)
~𝑁 0, 1   𝑢𝑛𝑑𝑒𝑟  𝑡ℎ𝑒  𝑛𝑢𝑙𝑙  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠  𝑜𝑓  𝑛𝑜  𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 [5] 

𝑤ℎ𝑒𝑟𝑒  𝑌 𝑡   𝑖𝑠  𝑡ℎ𝑒  𝑑𝑎𝑖𝑙𝑦  𝑐𝑜𝑢𝑛𝑡,𝑌! 𝑡 ≔
1
7 𝑌(𝑖)

!!!

!!!!!

  𝑎𝑛𝑑  𝑆!! 𝑡 ≔
1
6 [𝑌 𝑖 − 𝑌! 𝑖 ]!

!!!

!!!!!

 

 
An alert is set off if 𝐶! 𝑡 > 𝑧!!!, where 𝛼 is the desired significance level, though, 𝛼 = 0.001 
is recommended for the 𝐶! algorithm [5]. Using this threshold, we can construct an upper 
confidence limit for daily counts: 
 

𝑈! ≔ 𝑌! 𝑡 + 𝑧!!!𝑆!(𝑡) 

 
Similarly, the 𝐶! method incorporates a 2-day lag into its baseline calculation as a way to 
increase the sensitivity by reducing the immediate effects of large increases on the baseline.  
 
 𝐶! 𝑡 ≔ ! ! !!!(!)

!!(!)
~𝑁 0, 1   𝑢𝑛𝑑𝑒𝑟  𝑡ℎ𝑒  𝑛𝑢𝑙𝑙  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠  𝑜𝑓  𝑛𝑜  𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 [5] 

𝑤ℎ𝑒𝑟𝑒  𝑌! 𝑡 ≔
1
7 𝑌(𝑖)

!!!

!!!!!

  𝑎𝑛𝑑  𝑆!! 𝑡 ≔
1
6 [𝑌 𝑖 − 𝑌! 𝑖 ]!

!!!

!!!!!

 

 
An alert is set off if 𝐶! 𝑡 > 𝑧!!!, where 𝛼 is the desired significance level, though, 𝛼 = 0.001 
is recommended for the 𝐶! algorithm [5]. Using this threshold, we can construct an upper 
confidence limit for the daily count: 
 

𝑈! ≔ 𝑌! 𝑡 + 𝑧!!!𝑆!(𝑡) 
 
The 𝐶! method relies on the 𝐶! method and looks similar to a CuSum method in that it uses a 
cumulative sum of the previous day’s values [5].  
 

𝐶! 𝑡 ≔ max  {0,𝐶! 𝑖 − 1}
!

!!!!!

 

 
Unlike the prior methods, the distribution of this statistic is not standard normal. This is easily 
seen since the statistic cannot be negative, by definition. It isn’t clear what distribution the 𝐶! 
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statistic follows, but conceivably, it will be similar to that of the CuSum method. Using 
simulation, we found that a cut-off value of 2.6 yielded an approximate 5% significance level, 
although we do not explicitly use this method in our analysis.  
 
Additionally, we aggregated ACES cold weather injury data daily between the years of 2010 and 
2016 in select public health unit regions, those being: Toronto, Northwestern, Thunder Bay and 
Porcupine. We also had access to daily meteorological information for these regions, variables of 
interest were: daily minimum temperature, daily maximum temperature, daily mean temperature, 
and diurnal range, which is defined as the difference between the daily maximum and daily 
minimum temperature.  
 
We began our analysis by looking at correlations (both Spearman and Pearson) between daily 
counts of cold related injury in these select public health regions and the meteorological 
variables of interest. We chose to use both Spearman and Pearson correlations since it isn’t clear 
whether a linear relationship should be expected; it is entirely possible that a non-linear 
monotonic relationship exists. Moreover, we looked for a lag relation between these by using 
cross-correlation functions (CCF) and plotting them for select lag values, which were based on 
physiologic data [6]. To finish our analysis, we retrospectively applied the family of 𝐶 
algorithms to our data in order to determine whether they were effective at capturing elevated 
counts and whether we could combine the traditional warning system, which bases its alerts off 
of meteorological data, with an aberration detection warning system. Since non-winter months 
correspond to long periods without cold related injury, we decided to restrict our data to fall 
between December 1st and March 31st; this prevents the baseline in the 𝐶 methods from being 
affected by the overabundance of zero counts. Additionally, since natural cold related injury can 
only occur during this interval, the restriction of our data is theoretically consistent.  
 
2.3 Results 
 
Moderate negative correlations were found between daily counts of cold related injury and daily 
minimum, maximum and mean temperatures in each region of interest. Minimal positive 
correlations were found between daily counts of cold related injury and daily diurnal range in all 
regions.  
 
From Table 1, there is some evidence towards a negative linear or negative non-linear monotonic 
relationship between daily minimum, maximum and mean temperatures and daily counts of cold 
related injury. Since correlation is a transitive property and daily minimum, maximum and mean 
temperature are all highly correlated, we would expect all of them to be correlated with daily 
cold related injury counts or none of them. Further, as these correlations are only moderate, this 
suggests a better warning system is needed. Traditionally, daily minimum temperatures have 
been used by Environment Canada to establish a warning system and so we will use this measure 
in our analysis.  
 
It is well known that there is a lag between heat exposure and heat related mortality and 
morbidity [6], for these reasons, we were interested in knowing whether a similar lag existed 
between cold exposure and cold related mortality and morbidity. To determine this, we made use 
of cross-correlation functions and their plots using R. Initially, we needed to use first order 
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differencing to make both the count time series and the daily minimum temperature time series 
weakly stationary, this was further verified using autocorrelation functions that were plotted. 
When constructing cross-correlation plots between the time series, a maximum lag value of 14 
days was used.  
 

PHU Daily Count and Daily Min. Temp. 

Spearman Pearson 
Toronto -‐0.3556186	   -‐0.4227202	  

Northwestern -‐0.2254353	   -‐0.235652	  
Thunder Bay -‐0.3119739	   -‐0.2972599	  

Porcupine -‐0.2652857	   -‐0.2879026	  
PHU Daily Count and Daily Diurnal Range 

Spearman Pearson 
Toronto 0.0680736	   0.1261248	  

Northwestern 0.02668961	   0.003873671	  
Thunder Bay 0.02790925	   0.008320056	  

Porcupine 0.1242861	   0.1109848	  
PHU Daily Count and Daily Mean Temp. 

Spearman Pearson 
Toronto -‐0.3635691	   -‐0.4102995	  

Northwestern -‐0.2333312	   -‐0.2480959	  
Thunder Bay -‐0.3449329	   -‐0.3360687	  

Porcupine -‐0.2677948	   -‐0.2981839	  
PHU Daily Count and Daily Max. Temp. 

Spearman Pearson 
Toronto -‐0.3508343	   -‐0.3730992	  

Northwestern -‐0.2311081	   -‐0.2484023	  
Thunder Bay -‐0.3360834	   -‐0.3409816	  

Porcupine -‐0.2414059	   -‐0.2753933	  
 
 
 
 
 
 
 
From Figure 1, there is evidence of statistically significant cross-correlation between the time 
series at lag values of 0, 2 and 4 days. Since the magnitude of these values is quite small (< 0.10) 
and they occur within a short window of the initial exposure, it’s not clear how clinically 
significant these lags are. Similar CCF plots were found for Thunder Bay, Porcupine and 
Northwestern, with significant positive and negative cross-correlations seen at positive lag 
values. However, the lag values in each were different, this may suggest some sort of underlying 
pattern or be due to random noise. Further investigation regarding the lag association should be 

Table	  1:	  Both	  Spearman	  and	  Pearson	  correlations	  between	  daily	  
counts	  of	  cold	  related	  injury	  and	  meteorological	  variables	  of	  
interest	  in	  each	  PHU.	  	  
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undertaken, ideally using similar methods that were able to demonstrate a lag association 
between heat exposure and morbidity [6].  
 

 
 
 
 
 
 
Our final component of the analysis was to retrospectively apply aberration detection algorithms 
to the data restricted between December 1st and March 31st each year. This restriction is 
necessary since natural cold related injuries are physiologically impossible during the non-winter 
months, and the abundance of zeros will heavily affect the baseline values.   
 
The winters prior to 2014 did not lead to more than two cases of cold related injury on any day in 
Toronto. Due to the extreme temperatures experienced in Northern Ontario, we wanted to 
compare our results from Toronto with those from Northern Ontario, to do this; we aggregated 
the counts for the three northern public health regions previously mentioned. Again, the daily 
counts of cold related injury in Northern Ontario between the years 2011 and 2014 were low, 
with only two daily counts exceeding three. Moreover, it is known that the winters between 2011 
and 2014 were unseasonably warm in Ontario [1] and so the lack of cold related injuries is not 
surprising, to facilitate a better comparison, we further restricted our data to the years 2014 and 
greater.  
 
Applying the 𝐶! method (α=0.001) retrospectively to both the Toronto and Northern Ontario 
data between December 1st and March 31st for the years 2014 and greater, we saw 20 and 21 

Figure	  1:	  Cross-‐correlation	  plot	  for	  daily	  minimum	  temperature	  and	  daily	  ED	  visits	  for	  
cold	  related	  injury	  in	  Toronto.	  	  
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alerts, respectively. Table 2 highlights the corresponding date and daily minimum temperature 
when these alerts occurred. It is clear that Northern Ontario experiences colder minimum 
temperatures more frequently than Toronto does. However, larger counts occurred in Toronto, 
this is likely due to the larger total and vulnerable populations. Though, it is also possible that 
those in Northern Ontario can withstand colder temperatures before experiencing cold related 
injury or that they have a better understanding of the consequences of prolonged cold exposure. 
Regardless, it is evident that indicators based solely on meteorological variables do not work as 
well as we would like.  
 

Toronto C1 Aberration Detection Data (Winter Period 2014-2016)  α=0.001 

Date Number of Cases Minimum Temp. (C) 

03-01-14 5 -22.3 

20-01-14 2 -16.5 

15-02-14 3 -11.9 

26-02-14 3 -14.2 

13-03-14 3 -16.5 

03-12-14 2 -0.6 

18-12-14 2 -4.2 

05-01-15 3 -12.5 

08-01-15 5 -14.8 

19-01-15 3 -7.7 

30-01-15 2 -13.7 

03-02-15 5 -14.0 

15-02-15 11 -25.1 

28-03-15 3 -10 

19-12-15 2 -2.3 

27-12-15 1 -0.6 

31-12-15 2 0.6 

13-02-16 4 -24.7 

14-02-16 12 -22.4 

02-03-16 1 -28.8 

Northern Ontario C1 Aberration Detection Data (Winter Period 2014-2016) α=0.001 

Date Number of Cases Minimum Temp. (C) 

17-01-14 3 -23.0 

24-02-14 2 -21.3 

01-03-14 4 -30.1 

02-03-14 7 -32.3 

23-03-14 1 -27.0 

31-03-14 1 -13.0 

01-12-14 2 -25.3 

13-12-14 1 -3.1 

21-12-14 2 -9.4 

31-12-14 2 -26.8 
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02-01-15 4 -30.1 

30-01-15 3 -28.1 

14-02-15 3 -31.0 

23-03-15 1 -19.3 

15-12-15 1 -9.4 

01-01-16 1 -10.2 

11-01-16 2 -27.5 

08-02-16 1 -16.3 

11-02-16 4 -28.5 

02-01-16 1 -2.9 

03-03-16 4 -30.9 

 
2.4 Discussion 
 
The application of non-linear lag distributed models may be necessary to further analyze whether 
a lag relationship exists between cold exposure and cold weather injury. This approach was 
developed and implemented by Gasparrinia to demonstrate the lag relationship between heat 
exposure and heat related injury [6]. It is clear that using cross-correlation functions alone cannot 
discount the fact that we may be seeing significant cross-correlations due to random noise alone. 
 
We propose a novel approach to cold weather alerts and warnings, more specifically, we think a 
synthesis of aberration detection methods and meteorological variables will lead to a better 
warning system.   
 
Using aberration detection methods alone can lead to missed alerts after a large shift in the 
baseline (Figure 2) or may lead to false alarms due to a very minimal baseline. We can use 
meteorological variables in the following way: suppose we see an aberrant count on any arbitrary 
day, if the meteorological variables are forecast to be similar the following days, we would 
expect further aberrant counts. This would lead to warnings that are based both on aberration 
detection methods and meteorological variables. Further, if we see elevated counts on a day with 
meteorological conditions not indicative of a warning, and the following days are projected to be 
the same, we could issue a warning.  
 
However, we recognize that over-warning is not as worrisome as under-warning since the former 
will not lead to an increase in cold related injuries while the latter will. For these reasons, we 
should penalize under-warning more severely, however, we did demonstrate that the 
conventional method did fail to elicit warnings on days where aberrant counts occurred. Thus, a 
more rigorous comparison in terms of the type 1 and type 2 errors is required.  
 
This combination of methods should increase both the specificity and sensitivity of the warning 
system since we are eliminating potential days where the original warning system produced false 
alarms as well as including potential days where the original system missed true alarms.  

Table	  2:	  The	  dates,	  counts	  and	  minimum	  temperatures	  corresponding	  to	  the	  alerts	  in	  
both	  Toronto	  and	  Northern	  Ontario	  using	  the	  C1	  method	  for	  the	  study	  period.	  	  	  
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2.4 Summary 
 
We found that the current cold weather warning system employed in Ontario had some flaws, it 
failed to elicit warnings on days where significant counts of injury occurred. We believe 
combining the current warning criterion with aberration detection methods such as variants of 
Shewhart control charts or CuSum should lead to a system with increased sensitivity and 
specificity. This could reduce the burden of preventable morbidity on the healthcare system in 
Ontario and lead to safer winters for residents of the province.  
 
 
 
 
 

Figure	  2:	  The	  C1	  surveillance	  plot	  (α=0.001)	  for	  Toronto	  restricted	  to	  winter	  data	  
(December	  1st	  to	  March	  31st)	  for	  the	  years	  2014	  and	  up	  [15].	  	  
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Figure	  3:	  The	  C1	  surveillance	  plot	  (α=0.001)	  for	  Northern	  Ontario	  restricted	  to	  winter	  
data	  (December	  1st	  to	  March	  31st)	  for	  the	  years	  2014	  and	  up	  [15].	  	  
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Chapter 3 
 
Spatiotemporal Analysis of Seasonal Influenza in Ontario 
 
3.1 Introduction 
 
Spatiotemporal patterns of influenza are still not fully understood; a study conducted in the USA 
found a westerly to easterly spread [23], however, it isn’t clear whether Ontario is subject to this 
spread. Knowledge of the spatiotemporal evolution of influenza is important to public health 
officials, as this information would allow a more refined stock of antivirals, better vaccination 
campaigns, and appropriate staffing of hospitals, for example. This would result in a more 
informed planning process and, thus, likely reduce the amount of money spent preparing for the 
influenza season. 
 
Currently, methods based on time series and cyclic regression are used to study the 
spatiotemporal spread of influenza [20]. However, the dataset used in this study provides time 
series data for over 500 geographic units in Ontario and the aforementioned methods are largely 
aspatial and require plots to both select suitable parameters and to perform diagnostic checks. 
Moreover, it isn’t clear how comparisons would be made between these models since they may 
differ significantly. For these reasons, a novel approach capable of making comparisons between 
the large number of geographical units is necessary. 
 
3.2 Methods 
 
Through Kingston, Frontenac and Lennox & Addington (KFL&A) Public Health, we had access 
to the total daily number of emergency department (ED) visits and the daily number of ED visits 
for influenza-like illness (ILI) in all 516 Forward Sortation Areas (FSA) of Ontario. FSAs are 
geographical units corresponding to a triplet of characters. The first character indicates the area 
of Ontario, the following character indicates whether the area is rural or urban and the final 
character encodes the size of the area. These data spanned January 1st, 2002 to March 31st, 2014. 
Influenza-like illness is a diagnosis assigned to symptoms that can be caused by various 
respiratory infections, for this reason, it’s likely many of the cases caught are due to respiratory 
infections other than influenza. Further, it is unclear whether the reporting rate across public 
health units is homogenous, it is likely that areas with larger densities see much higher reporting 
rates due to increased transmission of respiratory infections and a greater presence of public 
health and community health programs. 
 
After cleaning the data, we aggregated them by week in each FSA allowing us to calculate the 
proportion of weekly ED visits due to ILI per FSA. In other words, we had time series data for 
all 516 FSA composed of the weekly proportion of ED visits due to ILI between January 1st 2002 
and Match 31st 2014. However, some of these time series were missing data, while others were 
oversaturated with zero counts, which was likely due to their small sizes. For these reasons, we 
removed the following FSAs: K1P, K1X, K2R, K2V, K6T, L1L, L4V, L5S, L5T, L6G, L7K, 
L9J, L9Z, M5H, N3E, N6L, N6N, N8V, P0Y and P7L. The instability of the rates in these FSAs 
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as well as the nature of the missing data should be further investigated and methods to deal with 
these issues should be explored, however, we will not pursue this in our research. 
 
The next step of our analysis was to construct Serfling curves for each FSA using five years of 
data in our baseline. This type of curve relies on cyclic regression and was originally developed 
by Robert Serfling in 1963 [19], but has been updated and modified several times over the years 

[18]. Traditionally, Serfling’s method requires the removal of trend from the baseline data and to 
do this, we decomposed the time series data into their trend, seasonal and irregular components 
and kept only the latter two. To do this, we made use of the stl function built into R, which 
applies non-parametric regression. It is important to note that this method of removing trend is 
different from both Serfling’s original method and the common current methods. For each FSA, 
we constructed models of the form: 
 

𝑦! ≔ 𝛽! + 𝛽! cos
2𝜋𝑡
52.18 + 𝛽!sin  

2𝜋𝑡
52.18  

 
where 𝑡 refers to the week, 𝑦! is the sum of the seasonal and irregular components of the time 
series at week 𝑡, 𝛽! are regression coefficients and  !!

!".!"
 is included to account for the assumed 

periodicity of influenza since there are 52.18 weeks in a year, on average.   
 
We then plotted the predicted curves based on these regressions, as well as the upper confidence 
interval at two standard deviations. Weekly data observed in the present flu year could then be 
overlaid on these plots to determine whether the observed data exceeds the expected data in each 
FSA. Summing the area above this threshold and observing the first week the threshold was 
crossed then provided us with both the total excess flu morbidity and the starting week of the flu 
season in each FSA. This information allowed us to examine whether seasonal flu was spatially 
structured or random in the study period. We then used Moran’s 𝐼 to test for global spatial 
autocorrelation in both the start week and excess influenza, and if present, we used local 
indicators of spatial autocorrelation (LISA) to examine local spatial autocorrelation. 
Conceptually, spatial autocorrelation refers to whether units in space are similar, dissimilar or 
random. Positive values of 𝐼 indicate spatial units are similar while negative values indicate they 
are dissimilar, further, 𝐼 = 0 indicates spatial randomness. 
 
Global Moran’s 𝐼 is given by: 
 

𝐼 ≔
𝑁
𝑤!"!!

𝑤!" 𝑋! − 𝑋 𝑋! − 𝑋!!

𝑋! − 𝑋 !
!

   

 
where 𝑤!" is the 𝑖𝑗!! entry of the matrix of spatial weights, 𝑁 is the total number of spatial units, 
𝑋 is the variable of interest and 𝑋 is the arithmetic mean of the variable. Additionally, the matrix 
of spatial weights is constructed such that 𝑤!" = 1 if  𝑖 ≠ 𝑗 share a border and 0 otherwise.  It is 
important to note that 𝐼 ∉ [−1, 1] like the traditional measures of correlation. Finally, under 𝐻! 
of no spatial autocorrelation, we can standardize 𝐼 and thus determine the associated p-value 
[16]. 
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Similarly, LISA can be defined as: 
 

𝐼! ≔
𝑋! − 𝑋
𝑚!

𝑤!" 𝑋! − 𝑋
!

   

 

𝑤ℎ𝑒𝑟𝑒  𝑚! ≔
1
𝑁 𝑋! − 𝑋 !

!

 

 
and  𝑋, 𝑤!" and 𝑁 are as defined before. Further, 𝐼 = !

!
𝐼!! , which we would expect [2]. Note, 

multiple comparison correction is implemented by dividing α for a given spatial unit by the 
number of neighbors that unit has plus one [3]. For example, if an FSA has six neighbors, then 
the corrected significance level would be !

!!!
. Moreover, global spatial autocorrelation is a single 

measure of the overall spatial autocorrelation present in the entire spatial entity composed of the 
spatial units while local spatial autocorrelation is a value assigned to each spatial unit measuring 
its spatial autocorrelation relative to the surrounding spatial units.   
 
To complete our analysis, we wanted to consider periodograms of our time series to get an initial 
look at the period of the influenza season by FSA. We also performed wavelet analyses of these 
time series to understand the spatiotemporal patterns in the data. Wavelet methods are useful 
when time series are non-stationary and show changing variance, additionally; they allow us to 
make comparisons between multiple time series [22]. Selecting an FSA as a comparator, we can 
look at the differences in phase angles of the wavelets between FSAs to determine whether the 
flu seasons in these FSAs are in sync or out of sync. We chose to use M5A as the comparator 
since it lies in the greater Toronto area (GTA), which contains a majority of Ontario’s 
population.  
 
The periodogram is defined as: 
 

𝐼
𝑗
𝑛 ≔

𝑛
2 𝐴!! + 𝐵!!      

 

𝑤ℎ𝑒𝑟𝑒  𝐴! ≔
2
𝑛 𝑌! cos

2𝜋𝑡𝑗
𝑛

!

!!!

, 

 

  𝐵! ≔
2
𝑛 𝑌! sin

2𝜋𝑡𝑗
𝑛

!

!!!

 

 
and 𝑓:= !

!
  𝑓𝑜𝑟  𝑗 = 1, 2,… , 𝑘 − 1 is the given Fourier frequency and  𝑌! is the 𝑡!! observation of 

the time series of interest [13]. 
 
Additionally, the wavelet transformation we will use is the Morlet wave given by: 
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𝑊! 𝑠 ≔ 𝑥!!𝜓∗ 𝑛 − 𝑛! 𝛿𝑡
𝑠   𝑤ℎ𝑒𝑟𝑒  𝜓∗ 𝜂 ≔

𝛿𝑡
𝑠

!
!
𝜋!

!
!𝑒!!!!𝑒!

!!
!

!!!

!!!!

,𝜔! ≔ 6  𝑎𝑛𝑑   

 

𝜂 ≔
𝑛 − 𝑛! 𝛿𝑡

𝑠  
 
here, 𝑛 is the localized time index, 𝑠 is the wavelet scale, 𝑁 is the number of elements in the time 
series being transformed, 𝑥!! is the 𝑛! !! observation from the time series, 𝛿𝑡 is the time step of 
the series and * refers to the complex conjugate operator [4, 17,  22]. 
 
These wavelet transforms allow us to look at both the phases and power spectra across multiple 
periods (they are powers of 2 to facilitate fast Fourier transforms (FFT)). Notice, this will be a 3-
dimensional plot projected into 2-dimensions, thus, it will be a contour plot. We can calculate the 
power spectrum and phase angle as:  
 

𝑊!(𝑠) !  𝑎𝑛𝑑   tan!!
ℑ 𝑊!(𝑠)
ℜ 𝑊!(𝑠)

 

 
respectively [22]. Here, ℑ refers to the imaginary component and ℜ refers to the real component. 
It is important to note that this method requires the time series to be padded with zeros to 
facilitate proper comparisons for larger periods; this results in a cone of influence on the 
periphery of the plot whereby results may not be as accurate. We thus need to be careful when 
analyzing such plots and results [22]. 
 
3.3 Results 
 
Using Serfling regression, we were able to create curves for all FSAs considered. Figure 1 shows 
an example of a Serfling curve for P9N in the 2009 and 2010 flu year.  
 
It is clear that the 2009 H1N1 epidemic was picked up by the Serfling curve, evident by the 
marked increase above the epidemic threshold. Notice, further, the initial spike around week 35, 
which was seen to be in excess. It is possible that early information like this could lead to more 
timely responses.   
 
From Figure 2, we see that the Serfling curve suggests the flu season began on week 37 and by 
summing the excess area; we can quantify the magnitude of the flu season. This was found to be 
0.1174795, thus, in the 2010 and 2011 flu year; there was an excess weekly ILI proportion of 
almost 0.12 in K6V. These means that we saw about a 10% increase in the weekly ILI proportion 
compared to what we expected.  
 
It is of interest to consider the diagnostic plots for these predictive curves, however, since we are 
creating one for 496 FSAs each year, this would be hard to implement. From Figure 3, there is    
some fanning of the residuals. There is also a slight deviation from the expected line in the          
normal QQ plot on the right tail. We should further examine these and consider either weighted   
least squares regression or potentially a Poisson regression model using an offset.  



	   15	  

 

 
We were interested in knowing whether there was significant and annually consistent global       
spatial autocorrelation amongst flu season start weeks across our FSAs of interest. We derived a 
summary measure of the seven start weeks for each FSA corresponding to the seven Serfling      
curves constructed for the seven flu weeks included in the study. We used the median since it is 
unclear whether the distribution is symmetric and, hence, the mean may not be a meaningful 
measure of the central tendency. From Figures 4 and 5, notice the somewhat general trend of flu 
beginning later in the southern FSAs. The global Moran’s 𝐼 test returned 𝐼 = 0.09 which 
corresponds to a p-value of less than 0.001. Although the Moran’s I statistic is quite small, it is 
still evidence of significant positive global spatial autocorrelation and so we carried out a LISA 
analysis and made use of choropleth plots to examine local spatial autocorrelation. 
 
 
 
 
  
 
 
 
 

Figure	  4:	  The	  Serfling	  curve	  for	  P9N	  in	  the	  2009	  and	  2010	  flu	  year,	  notice	  the	  sharp	  
peak	  due	  to	  the	  H1N1	  outbreak	  that	  flu	  year.	  	  
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Figures 6 and 7 illustrate the local Moran’s I values and the associated p-values, respectively. 
There are areas with large positive local Moran’s I values that correspond with significant 
corrected p-values, thus we see that some FSAs in Ontario are positively influenced by their 
neighbour FSAs in terms of the median starting week of the flu season.  
 
We further wanted to investigate the excess rates of influenza yearly by FSA using again the 
same approach as was used above, but applying it to each flu year we have data for, rather than 
using the median value over the seven years of data as we did before.  
 
Significant global spatial autocorrelation was found for each flu year observed, the p-values all 
being less than 0.001. Moreover, the global Moran’s I statistics were 0.09, 0.21, 0.22, 0.18, 0.10, 
0.18 and 0.22, respectively. We again appealed to LISA in order to determine the local spatial 
autocorrelation driving this process.  
 
Figures 8 through 14 only partially uncover the spatiotemporal pattern of influenza in Ontario, 
they highlight that the spatial dependence of excess influenza is conditional on the flu year. This 
is troubling since our intent is to establish the spatiotemporal diffusion of influenza in Ontario.  
 

Figure	  5:	  The	  Serfling	  curve	  for	  K6V	  in	  the	  2010	  and	  2011	  flu	  year.	  	  
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Since these methods are somewhat descriptive, a more analytic technique is required to quantify 
the spatiotemporal patterns of influenza in Ontario. To do this, we applied both Fourier methods 
and wavelet analysis techniques to our data.   
 

 
Periodograms, as briefly described before, use given Fourier frequencies up to half the total 
length of the time series and roughly examine the magnitude of the periodic behavior at these 
frequencies. Higher values indicate stronger periodicity in the data for that given period.  
 
The periodogram analysis of the time series corresponding to each FSA yielded a period of 52 
weeks for all but 49 FSAs, inspection of these 49 revealed quite sparse counts due to either small 
population size or incomplete data. This resulted in a periods ranging from three weeks to the 
entire study length, rather than the expected 52 weeks. Additionally, a few FSAs had periods 
surrounding 52 weeks, but this is likely due to leakage between Fourier frequencies, (i.e., effects 
from 51, 52 and 53 leaking into the surrounding frequencies). This can lead to large 
periodograms associated with periods very near 52 weeks.  
 
 
 
 
 
 

Figure	  6:	  The	  regression	  diagnostic	  plots	  for	  the	  2010	  and	  2011	  flu	  year	  Serfling	  curve	  
in	  K6V.	  	  
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Figure	  7:	  The	  choropleth	  map	  of	  the	  median	  start	  of	  the	  flu	  week	  in	  each	  FSA	  based	  off	  
our	  Serfling	  curves.	  	  

Figure	  8:	  A	  zoomed	  in	  version	  of	  Figure	  4	  highlighting	  the	  Greater	  Toronto	  Area.	  	  
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Figure	  10:	  A	  choropleth	  map	  of	  the	  p-‐values	  associated	  with	  the	  local	  Moran’s	  I	  statistic	  
values	  seen	  in	  Figure	  6	  for	  the	  Greater	  Toronto	  Area.	  	  

Figure	  9:	  A	  choropleth	  map	  of	  the	  local	  Moran’s	  I	  statistic	  value	  associated	  with	  the	  
median	  start	  week	  of	  influenza	  in	  each	  FSA.	  	  	  
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Figure	  11:	  A	  choropleth	  map	  of	  the	  local	  Moran’s	  I	  statistics	  associated	  with	  excess	  
influenza	  rates	  by	  FSA	  for	  the	  2007	  and	  2008	  flu	  year.	  	  

Figure	  12:	  A	  choropleth	  map	  of	  the	  local	  Moran’s	  I	  statistics	  associated	  with	  excess	  
influenza	  rates	  by	  FSA	  for	  the	  2008	  and	  2009	  flu	  year.	  	  
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Figure	  13:	  A	  choropleth	  map	  of	  the	  local	  Moran’s	  I	  statistics	  associated	  with	  excess	  
influenza	  rates	  by	  FSA	  for	  the	  2009	  and	  2010	  flu	  year.	  	  

Figure	  14:	  A	  choropleth	  map	  of	  the	  local	  Moran’s	  I	  statistics	  associated	  with	  excess	  
influenza	  rates	  by	  FSA	  for	  the	  2010	  and	  2011	  flu	  year.	  	  
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Figure	  15:	  A	  choropleth	  map	  of	  the	  local	  Moran’s	  I	  statistics	  associated	  with	  excess	  
influenza	  rates	  by	  FSA	  for	  the	  2011	  and	  2012	  flu	  year.	  	  

Figure	  16:	  A	  choropleth	  map	  of	  the	  local	  Moran’s	  I	  statistics	  associated	  with	  excess	  
influenza	  rates	  by	  FSA	  for	  the	  2012	  and	  2013	  flu	  year.	  	  
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Figure	  17:	  A	  choropleth	  map	  of	  the	  local	  Moran’s	  I	  statistics	  associated	  with	  excess	  
influenza	  rates	  by	  FSA	  for	  the	  2013	  and	  2014	  flu	  year.	  	  

Figure	  18:	  The	  periodogram	  for	  K6Vs	  time	  series,	  note	  the	  aforementioned	  leaking	  
effect	  at	  the	  peak.	  	  
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Figure 15 shows the periodogram for K6V, notice a sharp peak around a frequency of 
0.02006173, which corresponds to a period of approximately 50 weeks.  
 
Similarly, we can view the power spectrum contour plot for this FSA, which corresponds to 
looking at given periods versus time, in terms of week. Further, the contouring roughly equates 
to the strength of the given period at a given time, higher values indicating a greater association.  
 
To read these plots, we look at the x-axis to see the given week of the time series and the y-axis 
to look at the potential period, in terms of week. Then, the contouring color indicates the strength 
of the period at that given week of the time series. Further, notice the white shading on the 
border, this is the cone influence, which was previously mentioned. For large periods being 
tested (such as 128 weeks), the length of the data may not be enough to facilitate proper testing 
and so it is padded with zeros to increase the length. This obfuscates the results and so we cannot 
be as certain in the regions that required padding. This cone indicates the boundary of the region 
and so we must be careful interpreting exterior of it.   
 
Additionally, we can also analyze the coherence between two waves using similar plotting; in 
this case, the contouring indicates the level of coherence ranging between 0 and 1. Figure 17 is 
an example of this type of plot.  
 

 
 

Figure	  19:	  The	  contour	  plot	  of	  power	  normalized	  by	  the	  variance	  for	  K6V.	  	  
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Figure 16 indicates similar results in terms of the periodicity of influenza in this FSA, here; the 
horizontal dashed line corresponds with a period of 52 weeks. Additionally, the thick black 
outlines indicate significant areas based on 300 Monte Carlo simulations with an AR(1) process. 
Therefore, we see strong evidence for a 52-week period for a large portion of the study period in 
this FSA.  
 
More importantly, we are interested in the wavelet coherence between FSAs, we chose to use 
M5A as a comparator within Ontario since it is in the GTA. The choice of a comparator is 
arbitrary though, and we could have performed this analysis using any FSA as a comparator. 
Figure 17 highlights areas with high wavelet coherence and also provides visual indicators of the 
phase angle coherence between the waves. Notice the strong coherence around the dashed 
horizontal line representing the 52-week period. The arrows indicate the phase difference 
between waves, an arrow pointing to the right implies the waves are in phase, an arrow pointing 
up implies the phase difference is positive, an arrow pointing down implies the phase difference 
is negative and an arrow pointing to the left implies the waves are in anti-phase. Note we are 
considering these angles modulo 2π.  
 
 

 
Since we had phase angles corresponding to the different wavelet scales for each time step in our 
time series, we needed to develop a summary statistic for the wavelet scale of 52 weeks, the 
median was used since it isn’t clear whether the distribution will be symmetric. With a summary 

Figure	  20:	  The	  contour	  plot	  of	  the	  wavelet	  coherence	  between	  M5A	  and	  K6V.	  	  
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measure for each FSA, we then created a choropleth plot to examine the spatiotemporal trend of 
influenza in Ontario. 
 
Looking at the plot in Figure 18, we see a general trend of influenza spreading from the 
northwest to the southeast; this is because both the magnitude and sign of the median phase 
differences contain information about the temporality between influenza in each FSA compared 
to M5A. More importantly, negative values indicate that the FSA in question enters the influenza 
season prior to M5A, while a positive value indicates the opposite. Further, the magnitude 
corresponds to  !"

!!
≈ 8.3 weeks. This implies that a one-unit difference in phase angle correlates 

with an 8.3-week difference in the start of the respective influenza seasons. However, since the 
spatial units in the north are large, these may be driving the apparent trend we see. For these 
reasons, analyses taking into account population densities need to be done as well to verify if the 
same pattern is seen.  
 
3.4 Discussion 
 
Since our data describes influenza-like illness rather than influenza, it is possible that many of 
our counts are due to respiratory infections other than influenza. This may conclude in us 
declaring the beginning of influenza season or excess influenza morbidity when there is truly 
increased morbidity due to another pathogen. Clearly, this is a major impediment that must be 
considered upon interpretation of our results. Performing laboratory analysis on a sample of 
patients to determine an underlying percentage of true influenza infection could resolve this 
issue. Doing so would allow us to more reliably comment on whether influenza is driving the 
influenza-like illness being observed.  
 
It is clear that the construction of Serfling curves in FSAs of Ontario can lead to useful 
implementation in both determining the beginning of the flu season and quantifying excess 
morbidity. More importantly, we have the existing retrospective data to operationalize this 
method and should look into further developments of the theory. Trends in these curves can 
allow us to distribute flu vaccine, antivirals and healthcare providers more equitably, in terms of 
space and time. However, these curves cannot tell us much about the simultaneous 
spatiotemporal behavior of influenza, as discussed earlier. Further, since these curves are easy to 
implement, there is huge potential for them be used in FSAs with the capability of monitoring 
them. Rather than using them retrospectively as we did, it would be wise to employ them 
prospectively to determine both the start week of the flu season and the weekly excess influenza 
morbidity.  
 
Wavelet methods are a powerful way to look at the spatiotemporal patterns of influenza across 
Ontario. However, there are two obvious shortcomings of these methods: firstly, the lack of 
polyvariate comparisons with associated statistical significance testing. Second, applying these 
methods to problems with such a large number of geographical units overtly requires multiple 
comparison corrections.  
 
Ultimately, our research suggests a northwest to southeast diffusion of influenza over the 12 
years we had data for. It is unclear what role population density plays in the trend, however, we 
expect it to play a significant one since influenzas mode of transmission is via droplets. Further, 



	   27	  

different types and subtypes of influenza may have unique diffusion patterns that our methods 
are not able to parse.  
 
With this information, we might consider the timing of vaccination campaigns to begin in the 
northwest prior to the 35th week of the calendar year and continue southeast ahead of the 
diffusion.  

 
3.5 Summary 
 
Using two separate methods, we found a northwest to southeast diffusion of seasonal influenza 
in Ontario. This suggests that influenza vaccination should begin in the northwest and extend to 
the southeast, just as the pathogen does. Further, implementing Serfling curves in public health 
units capable of doing so and monitoring them could prove useful in the fight against seasonal 
influenza.  
 
 
 
 

Figure	  21:	  The	  choropleth	  plot	  of	  the	  median	  phase	  differences	  using	  M5A	  as	  a	  
comparator.	  	  
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Figure	  22:	  A	  zoomed	  in	  view	  of	  figure	  18	  highlighting	  the	  Greater	  Toronto	  Area.	  	  	  	  
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Chapter 4 
 
Future Work 
 
Further development and refinement of our new cold weather warning system is necessary, as 
well are formal comparisons in terms of performance relative to the conventional method. No 
repository containing the dates of historical cold weather warnings exists to our knowledge and 
so making this comparison retrospectively would not be possible. Finally, we want to consider 
the use of CuSum methods rather than control chart methods, as they are capable of detecting 
much smaller shifts in the mean.  
 
For the spatiotemporal analysis of seasonal influenza in Ontario, another available approach is 
that of Bayesian vector autoregression (BVAR) [11] or spatiotemporal autoregressive integrated 
moving average (STARIMA) [12]. These methods allow us to take into account both the spatial 
and temporal dimension of data and to construct models with the ability to make explicit 
forecasts. Unfortunately, these methods are still not widely available on computers due to their 
complexity, which is primarily a result of the fact that we are considering both spatial and 
temporal components.  
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