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Introduction

Mediation analysis is commonly used to uncover pathways in a causal model

(VanderWeele, 2016). Mediation analysis consists of decomposing the causal relationship

between the exposure and the outcome into two separate pathways: the direct e↵ect

and the indirect e↵ect. The indirect e↵ect refers to the pathway that acts through the

mediator, while the direct e↵ect refers to the pathway that does not act through the

mediator (Richiardi et al., 2013). Causal mediation analysis is generally performed by

using the di↵erence method or the product method (VanderWeele, 2016). While these

techniques are easy to implement, they only provide meaningful estimates of the direct

and indirect e↵ects when 1) the mediator is continuous and normally distributed, 2) the

outcome is continuous and normally distributed, and 3) there is no interaction in the

regression model for the outcome (VanderWeele, 2016). In other settings, such as when

the outcome is a survival time variable, the product method and the di↵erence method

will generally produce di↵erent estimates of the direct and indirect e↵ects, and neither

one of these two estimates will have a causal meaning (VanderWeele, 2011). To address

this limitation, several techniques have been developed in recent years, such as the

method of natural e↵ect models (VanderWeele, 2011; Lange et al., 2012; VanderWeele,

2016). Compared to traditional approaches of performing mediation analysis, the

method of natural e↵ect models has the advantage of being very flexible; the same

methodology can be used to provide causal estimates of the natural direct and indirect

e↵ects with almost any type of mediator and outcome variables (Lange et al., 2012).

The method of natural e↵ect models was developed for data collected through simple

random sampling (SRS), which refers to sampling schemes where 1) all individuals in

the population have the same probability of being selected into the sample, and 2) all

pairs of individuals have the same probability of being selected into the sample

(Lumley, 2010). In practice, public health and social sciences research often involves

analyzing data collected from complex surveys, which are usually defined as surveys

that consist of sampling schemes with multiple levels of selection (Lumley, 2010). In

order to perform a fully design-based analysis, information from the complex survey’s

sampling scheme must be incorporated into the analysis (Little, 2004; Lee and

Forthofer, 2006; Lumley, 2010). To our knowledge, the implications of incorporating
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design information from complex surveys into natural e↵ect models have never been

considered directly. In other words, it is not known how natural e↵ect models should be

tailored to complex survey settings in general. As a result, some studies have

incorporated design features into natural e↵ect models in an ad hoc manner, while

others have simply disregarded the design features altogether. The purpose of this

practicum was to identify the optimal methodology for estimating natural direct and

indirect e↵ects for survival outcomes in a complex survey setting.

The remainder of this report is divided into two chapters, which are structured as

follows. Chapter 1 provides necessary background information related to complex

surveys and causal mediation analysis. More specifically, Section 1.1 provides a brief

introduction to the Canadian Community Health Survey (CCHS), which is an annual

survey conducted by Statistics Canada that will serve as a motivating example

throughout this report. Section 1.2 introduces concepts related to complex sampling

schemes, while Section 1.3 considers the analysis of data collected from complex

surveys. Section 1.4 introduces causal mediation analysis techniques and the challenges

in applying these methods to survival data. Chapter 2 examines the use of natural

e↵ect models for survival outcomes in a complex survey setting. Section 2.2 presents the

various di↵erent methods of estimating natural direct and indirect e↵ects (and their

corresponding variances) in such settings, and Section 2.3 includes a simulation study

that compares the performance of these methods. Section 2.4 provides a practical

example by using natural e↵ect models to determine whether job stress is a mediator of

the relationship between shift work and diabetes in a cohort of CCHS participants.

Finally, Section 2.5 summarizes the findings of this report and provides general

recommendations.
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1 Background

1.1 Canadian Community Health Survey (CCHS)

The CCHS is an annual cross-sectional survey of the Canadian population designed to

collect information regarding health determinants and health care utilization at the

national, provincial, and regional levels (Statistics Canada, 2017). The target

population consists of all individuals 12 years of age and older who live in a private

dwelling in any Canadian province or territory, with the exception of 1) individuals

living on a reserve or an Aboriginal settlement in one of the provinces, 2) members of

the Canadian Forces, and 3) the institutionalized population (Statistics Canada, 2017).

Prior to 2007, the CCHS was conducted over a 2-year period, and the results were

released at the end of each 2-year cycle. Since 2007, each cycle of the CCHS has been

conducted over a 1-year period, and the results are released annually (Statistics

Canada, 2017). The first CCHS surveys selected participants from three di↵erent

sampling frames: 1) an area frame, 2) a list frame of telephone numbers within the area

frame, and 3) a random digit dialling frame (Statistics Canada, 2002). In 2015,

Statistics Canada eliminated the latter two sampling frames. Instead of using three

di↵erent sampling frames, the CCHS now selects all adult participants through the area

frame, while children aged 12 to 17 are selected through a list generated by the

Canadian Child Tax Benefit (Statistics Canada, 2017).

To ensure that su�ciently large samples are collected from each province and health

region, the CCHS employs multiple levels of stratification during the design phase.

First, a fixed total sample size is divided amongst provinces and health regions. To do

so, each province is allocated a sample size that is proportional to its estimated

population (relative to that of the other provinces), and health regions are allocated a

sample size that is proportional to the square root of the health region’s estimated

population (relative to that of the other health regions within the province). Thus, a

health region of size n within a province of size N will be allocated a sample of

approximately S ⇥ N
T
⇥
p

n
N

individuals, where S is the fixed total sample size and T is

the estimated population of Canada. Once the samples sizes are allocated to each

health region, individuals are selected using a stratified multi-stage cluster sampling
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scheme. The health regions are stratified by city type (major urban centre, city, rural

region), and the major urban centres are further stratified according to geographic

location and socioeconomic characteristics. To facilitate data collection, clusters of 150

to 250 dwellings are created on the basis of geographic location, and six clusters are

randomly selected from within each stratum (Statistics Canada, 2017). The sampling of

clusters is performed using probability proportional to size, which means that the

probability of selecting a cluster is proportional to the number of dwellings within each

cluster (Lumley, 2010). Finally, households are selected using systematic sampling, and

one or two individuals are randomly selected from each household according to

pre-determined age-based selection probabilities, which are designed to oversample

children and seniors (Statistics Canada, 2017).

Certain design characteristics, such as stratum membership, cluster membership, and

sampling weights, must be known in order to perform design-based analyses (Lumley,

2010). While Statistics Canada does release sampling weights, the CCHS dataset does

not provide stratum and cluster membership information. Instead, Statistics Canada

releases a set of 500 replicate weights, which are obtained by re-sampling n� 1 out of n

clusters from within each stratum with replacement. The samples obtained through this

re-sampling process are multiplied by the original sampling weight in order to obtain

replicate weights. Finally, the replicate weights are post-stratified, which means that

they are re-scaled and adjusted in order to ensure that they are representative of the

Canada population. The original sampling weight is also post-stratified using the same

method that is employed to post-stratify the replicate weights (Statistics Canada, 2017).

1.2 Complex Survey Sampling

Almost all studies in the field of public health involve measuring a parameter in a finite

population (Lee and Forthofer, 2006; Lumley, 2010). For example, a researcher may be

interested in measuring the prevalence of diabetes in each Canadian province in order to

determine which jurisdictions require additional funding for diabetes treatment. This

quantity could be calculated directly if the status of diabetes were known for each

individual living in Canada. Unfortunately, such information is not readily available,

and interviewing the entire Canadian population is not feasible. As a result, researchers
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are often forced to collect information on a sample of the population. The most

elementary way of obtaining a probability sample is by SRS, where each individual in

the population has an equal selection probability and each pair of individuals has an

equal joint selection probability (Lumley, 2010). In other words, SRS implies that 1)

the probability of selecting individual i is the same as the probability of selecting

individual j for all individuals i, j in the survey population, and 2) the probability of

selecting individuals i and j is the same as the probability of selecting individuals k and

l for all individuals i 6= j and k 6= l in the survey population. Thus, if a sample of size n

is drawn using SRS, each potential sample of size n is equally likely to be selected. This

approach di↵ers from complex sampling schemes, which are usually defined as sampling

techniques that involve multiple levels of selection (Lumley, 2010), although some

authors consider all sampling strategies other than SRS to be complex (Lee and

Forthofer, 2006).

Most single-stage sampling schemes such as SRS require the complete sampling frame

to be known in advance, which limits their utility in practice as this information is

rarely known for large populations (Lee and Forthofer, 2006; Lumley, 2010). It may not

be desirable to use SRS even when the sampling frame is known due to practical and/or

economic considerations (Lumley, 2010). For instance, a simple random sample of the

Canadian population would include individuals from many di↵erent regions across

Canada; it could be di�cult to conduct in-person interviews with a sample that covers

such a wide geographic area without exhausting considerable resources. Data collection

can be simplified by selecting individuals within naturally existing groups in the

population. This approach is known as cluster sampling, and it can involve a single

level or multiple levels of sampling (Lee and Forthofer, 2006; Lumley, 2010). For

instance, a four-stage cluster sample could be obtained by first sampling census

divisions, then sampling cities within the selected census divisions, and then sampling

neighbourhoods within the selected cities. Finally, individuals could be sampled from

the selected neighbourhoods in the fourth stage of sampling, thereby ensuring that

sampled individuals live in close proximity to other sampled individuals. While cluster

sampling can reduce the costs associated with data collection, this approach generally

results in estimates with larger variances when compared to a sample of identical size

obtained through SRS (Lee and Forthofer, 2006; Lumley, 2010). This phenomenon
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occurs because individuals in a cluster are likely to be more similar to one another than

are individuals selected in a simple random sample (Lee and Forthofer, 2006; Lumley,

2010).

Another type of sampling scheme that is commonly used in survey research is stratified

sampling. The underlying idea is straightforward; the population is divided into groups

(known as strata) based on information that is available for each individual in the

population, and samples are taken from each stratum. Stratified sampling has two

major advantages over SRS and cluster sampling. First, it can lead to a reduction in

sampling variance. The reason for this is analogous to that which explains the greater

uncertainty in cluster sampling; individuals in a stratum are likely to be more similar to

one another than are individuals selected in a simple random sample. Stratified

sampling includes individuals from all strata, which means that more information is

collected from the population (Lumley, 2010). Second, stratified sampling can be used

to oversample groups that would otherwise be underrepresented. This ensures that the

samples are large enough to obtain reliable estimates for sub-groups of interest (Lee and

Forthofer, 2006; Lumley, 2010). To illustrate this point, consider the example of a

researcher who wishes to measure the prevalence of diabetes in each Canadian province.

If the researcher took a simple random sample of 2,500 individuals across Canada,

which has a population of 36,286,425 (Statistics Canada, 2016), then the probability of

being selected into the sample would be approximately 1 in 15,000
�
since

2,500
36,286,425 ⇡ 6.89⇥ 10�5 ⇡ 1

15,000

�
. The expected number of individuals selected from

Prince Edward Island, which has a population of 148,649, would be 10 (Statistics

Canada, 2016). Such a small sample would produce unstable and unreliable estimates

at the provincial level. Similar issues could arise in cluster sampling, since there is no

mechanism to ensure that clusters are distributed across the entire population. If one of

the objectives is to measure the prevalence of diabetes in Canada at the provincial level,

it would be beneficial to stratify the population by geographic region. In practice,

stratified sampling is limited by the fact that the information used for stratification

must be known in advance for each individual in the population (Lee and Forthofer,

2006; Lumley, 2010). While information about geographic location is usually readily

available, other variables, such as health indicators, are less likely to be known prior to

sampling.
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Cluster sampling and stratified sampling are common examples of design strategies that

give rise to complex surveys. Sampling strategies can be combined; for instance,

stratified cluster sampling is used by researchers who wish to exploit the beneficial

properties of both cluster sampling and stratified sampling. One of the most important

implications of complex sampling strategies is the unequal selection probability (Lee

and Forthofer, 2006). This characteristic of complex surveys can be illustrated through

the following example. Suppose a researcher wants to enrol 1,000 Canadians into a

study. In order to be able to perform analyses within each province, the researcher

stratifies the population on the basis of geographic location and selects 100 individuals

from each province (using SRS). Since the population of Ontario is greater than that of

Prince Edward Island, the probability of selecting an individual in Ontario will be

smaller than in Prince Edward Island (Statistics Canada, 2016). If a secondary aim of

the study is to compute summary statistics at the national level, the data can be

analyzed in a way that takes into account the di↵erent selection probabilities. This is

done by using sampling weights, which are defined as the inverse of the selection

probability (Lee and Forthofer, 2006; Lumley, 2010). In the previous example, the

sampling weight of individuals in Prince Edward Island, which has a population of

148,649, would be approximately 1,500
�
since 100

148,649 ⇡ 6.73⇥ 10�5 ⇡ 1
1,500

�
, while the

sampling weight of individuals in Ontario, which has a population of 13,982,984, would

be approximately 140,000
�
since 100

13,982,984 ⇡ 7.15⇥ 10�6 ⇡ 140, 000; Statistics Canada

(2016)
�
. Sampling weights provide a measure of how many people in the population are

represented by each sampled individual; those with larger sampling weights represent a

larger portion of the population and, thus, have more impact on the results.

Stratification can also be performed during the analysis stage. This approach, which is

known as post-stratification, adjusts the sampling weights in a way that ensures that

the estimated populations totals agree with known population totals (Lumley, 2010).

To implement post-stratification, the population total for each combination of the

variables used to adjust the sampling weights must be known (Lumley, 2010). In

addition to making the sample more representative of the population, thereby

minimizing sampling bias due to non-coverage of the sampling frame, post-stratification

can also increase precision if there is a relationship between the post-stratification

variables and the parameter of interest (Lee and Forthofer, 2006; Lumley, 2010). Since
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post-stratification requires the population totals to be known for each cross-classified

category of the post-stratification variable(s), this method can be di�cult to apply to

situations with multiple post-stratification variables. Other techniques, such as raking

and calibration, have been developed for such settings. Post-stratification, raking, and

calibration provide the same advantages and benefits as stratification does, with the

only exception being that these methods cannot ensure that enough information is

collected from underrepresented groups (Lumley, 2010). Furthermore, it may not be

desirable or even possible to use stratification during the design stage (Lee and

Forthofer, 2006; Lumley, 2010). First, a stratification method that is suitable for one

analysis may be inappropriate for another. Second, an approach that incorporates too

many stratification variables could be di�cult to carry out in practice. Third, it may

not be possible to stratify on the basis of individual-level auxiliary variables if the

proposed sampling scheme involves cluster sampling, where selection depends on

cluster-level variables (Lumley, 2010). Post-stratification can exploit information from

variables collected during the survey, and it can also be modified based on the

objectives of the analysis. In practice, stratification and post-stratification are usually

employed together (Lee and Forthofer, 2006; Lumley, 2010).

1.3 Analyzing Complex Survey Data

1.3.1 Design-Based vs. Model-Based Analyses

There are two broad frameworks for analyzing complex survey data (Little, 2004). The

first, which is known as design-based inference, attempts to describe the parameters

that exist within the finite population from which the sample is drawn. The finite

population is considered to be fixed, and the goal is to estimate the parameters that

would be obtained if the entire population were surveyed (as in a census). For this

reason, sampling weights, which are used to ensure that the sample is representative of

the population, should always be used in the context of design-based inferences. The

uncertainty in design-based inference arises from the fact that the sample is unlikely to

be perfectly representative of the population (Lee and Forthofer, 2006; Lumley, 2010).

If the entire finite population were surveyed (as in a census), it would not be necessary

to report variances and confidence intervals in a design-based analysis, since there
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would not be any sampling variability. The other framework that is commonly

employed by survey researchers is known as model-based inference. This approach does

not assume that the sample is drawn from a finite population; instead, it assumes that

the finite population is drawn from an infinite superpopulation, which is generated from

a model with unknown parameters. The goal of model-based inference is to estimate

the parameters in this superpopulation model (Lee and Forthofer, 2006; Lumley, 2010).

Unlike the previous approach, analyses carried out using the model-based framework

should always report variances and confidence intervals since it is impossible to sample

the entire infinite superpopulation. In other words, the parameters in the target

population are considered to be fixed in design-based inference, while they are treated

as random variables in model-based inference. If the parameters of interest are

equivalent across di↵erent groups of the population, it is not necessary to ensure that

the sample is representative of the population (Lee and Forthofer, 2006; Lumley, 2010).

As a result, some model-based analyses can be performed by ignoring the sampling

weights (Little, 2004; Lee and Forthofer, 2006; Lumley, 2010). It is important to note

that design-based and model-based approaches as described above are not the only

methods available for analyzing complex survey data; hybrid analyses combine elements

from both design-based and model-based frameworks (Sterba, 2009).

Design-based analyses are generally preferred when interest lies in estimating summary

statistics, such as the population mean (Lee and Forthofer, 2006; Lumley, 2010). A

popular estimator in design-based inference is the Horvitz-Thompson estimator, which

yields an unbiased estimate of the population mean by summing the weighted

observations and dividing by the total number of observations (Little, 2004; Lumley,

2010). Summary statistics can also be obtained through weighted regression analyses

with ratio estimators (Lumley, 2010). Interestingly, such approaches produce

asymptotically unbiased estimates of the parameters that would have been obtained if

the entire finite population were surveyed, even when the regression models are

misspecified (Lumley, 2010). However, precision depends on model fit; when the model

is correctly specified and all assumptions are satisfied, ratio estimators can be much

more e�cient than those obtained with the Horvitz-Thompson estimator (Little, 2004;

Lumley, 2010). Regression analyses are also commonly used to uncover relationships

between variables. In the context of design-based inference, regression models must
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always incorporate weights, since this implicitly includes the relevant design information

and ensures that the sample is representative of the population (Little, 2004; Lee and

Forthofer, 2006; Lumley, 2010). The incorporation of sampling weights can lead to a

reduction in bias if the sampling design is informative (Lee and Forthofer, 2006;

Lumley, 2010), which means that the selection probability depends on the outcome

variable after controlling for the other covariates included in the model (Little, 2004).

Since sampling weights are inversely proportional to the selection probability,

observations with smaller selection probabilities have a disproportionately larger

influence on the model fitting procedure, which leads to instability and to a reduction in

precision. Estimates from unweighted regression analyses can be more precise than

those from weighted regression analyses, but they will be biased if the sampling design

is informative. If the sampling procedure depends on a set of auxiliary variables, then

these auxiliary variables can be included in model-based analyses (Lee and Forthofer,

2006; Lumley, 2010). However, some surveys do not release all information related to

the sampling design due to privacy concerns, which means that it may not be possible

to control for all relevant design variables. To address the trade-o↵ between bias and

precision, it is generally recommended to perform both weighted and unweighted

analyses. The results from both analyses can be compared, and any discrepancies

should be further investigated (Lee and Forthofer, 2006; Lumley, 2010). Some authors

recommend selecting the weighted model unless the increase in variance is too large

(Lee and Forthofer, 2006), while others believe that the unweighted model should be

used as long as the point estimates do not di↵er considerably from those of the weighted

model (Lumley, 2010). The underlying principle of these two approaches is the same;

both assume that the model with sampling weights has less bias, while the model

without sampling weights has greater precision.

1.3.2 Variance Estimation

Unbiased point estimates of summary statistics can be obtained as long as the sampling

weight is known for each sampled individual (Lee and Forthofer, 2006; Lumley, 2010).

Even in complex surveys with multiple levels of sampling, selection probabilities (and,

thus, sampling weights) can be calculated straightforwardly. If sampling at each stage

does not depend on which other units were sampled, the overall selection probability is
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simply the product of the selection probabilities corresponding to each stage of

sampling. However, in order to obtain proper variance estimates, the analyst must

know both the selection probability for each sampled individual and the pairwise

selection probability for each pair of sampled individuals. Calculating pairwise selection

probabilities requires complete stratum and cluster membership information for all

sampled individuals (Lumley, 2010). Unfortunately, most surveys do not release this

information due to privacy considerations. Instead, some surveys, such as the National

Health and Nutritional Examination Survey (NHANES), combine clusters in order to

form larger clusters, thereby reducing the risk of individual identification. These groups

of clusters, which are sometimes referred to as pseudo-clusters, are created in a way

that ensures that variance estimates are approximately equal to those obtained when

complete stratum and cluster membership information is known (Mirel et al., 2010;

Johnson et al., 2014). Other surveys, such as the CCHS, release hundreds of di↵erent

sets of weights (Statistics Canada, 2002). These weights, which are known as replicate

weights, are intended to split the dataset into independent or partially independent

datasets. From a design-based perspective, the variance of any statistic provides a

measure of the variation that would be expected if the study were repeated multiple

di↵erent times, which means that approximate variance estimates can be obtained by

considering the variation across each set of replicate weights (Lee and Forthofer, 2006;

Lumley, 2010). The variance of regression parameters can be estimated directly from

design-based weighted regression models. However, when unweighted regression models

are used for design-based inference, more rigorous methods must be used, such as the

robust sandwich variance estimator (Lumley, 2010).

Replication refers to the process of splitting a sample into independent subsamples (Lee

and Forthofer, 2006; Lumley, 2010). The earliest replication methods consisted of

making repeated draws from a complete sample in order to obtain multiple subsamples.

Separate analyses were then performed on each subsample, and the results were

combined using a simple variance estimator. This method was originally proposed for

two reasons. First, the computing power required to obtain exact variance estimates

often exceeded that which was available, especially in the case of multi-stage designs.

Second, many statistics did not have explicit variance formulas (McCarthy, 1966; Lee

and Forthofer, 2006; Lumley, 2010). While the former point is no longer an important
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concern due to advancements in computing power, the latter remains a limitation in

many situations. The variance of many statistics, such as the median, cannot be

calculated explicitly. Furthermore, there is a growing concern regarding privacy and

confidentiality in survey research. As a result, many surveys do not release stratum and

cluster membership information in order to reduce the risk of individual identification

(Lee and Forthofer, 2006; Lumley, 2010). While replication has the benefit of being

easy to implement, it yields unstable estimates when the size or number of replicates is

small (Lee and Forthofer, 2006). Building on this idea, McCarthy (1966) proposed the

idea of Balanced Repeated Replication (BRR). This method is easiest to explain for

stratified cluster designs with two first-stage clusters per stratum. One cluster is

selected from each stratum to create the first half-sample, and the unselected clusters

are combined to create a second half-sample. Since these half-samples are independent,

the variance of a given statistic is simply two times the variance of the statistic across

the half-samples (Lumley, 2010). To increase the stability of the variance estimates, the

results from half-samples can be averaged over multiple di↵erent half-samples. If the

full sample contains K di↵erent strata, then 2K di↵erent combinations of half-samples

can be constructed (McCarthy, 1966; Lee and Forthofer, 2006; Lumley, 2010).

McCarthy (1966) showed that the same e�ciency can be obtained by using only K + 4

combinations of half-samples (Lumley, 2010). Fay’s method, which is used in many

statistical softwares, is a slight modification of BRR that enables all observations from

the full sample to be included in each sample (Lee and Forthofer, 2006; Lumley, 2010).

Instead of including each observation in only one of the two half-samples, as in BRR,

Fay’s method assigns weights to individual observations; those that would be included

are assigned large weights, while those that would be excluded are assigned small

weights (Judkins, 1990).

The idea behind all replication methods is the same; if point estimates of a given

statistic can be obtained from many independent or partially independent subsamples,

the variance of the statistic within the full sample can be estimated by combining the

results from each subsample (Lee and Forthofer, 2006; Lumley, 2010). In addition to

BRR and Fay’s method, which were described in the previous paragraph, partially

independent subsamples can also be obtained through simple re-sampling methods,

such as jackknifing or bootstrapping. With the jackknife approach, each first-stage
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cluster is removed from the sample one at a time. After a cluster is deleted, the weights

of the other sampling units are multiplied by a scaling factor in order to preserve the

total weight of the sample. The process is repeated until each first-stage cluster has

been removed once. As a result, the number of replicate samples obtained by

jackknifing is equal to the total number of first-stage clusters. Bootstrapping consists of

re-sampling clusters from within each stratum with replacement. The sampling weights

of each individual are then multiplied by the number of times that their cluster was

drawn. Since re-sampling is performed with replacement, some clusters will appear

more than once, while others will not appear at all. This process is repeated many

times. In both cases, the sampling weights for each replicate sample are usually

post-stratified and adjusted for unit non-response in order to ensure that each replicate

sample is representative of the population. With both the jackknife and bootstrap

approaches, analyses are performed on each replicate sample, and the results are pooled

together to obtain approximate variance estimates.

1.3.3 Combining Survey Cycles

Researchers are often interested in combining di↵erent cycles of a given survey. The

increase in statistical power that arises from merging di↵erent cycles is particularly

important for researchers who are studying a rare characteristic or trait. Statistics

Canada recommends using one of two methods to combine di↵erent cycles of the CCHS:

the separate method or the pooled method. In the separate method, parameters are

calculated for each cycle, and an estimate of the population parameter is obtained by

averaging these parameters (Thomas and Wannell, 2009). To illustrate this concept,

suppose that three di↵erent cycles of a given survey are combined. Let ✓1, ✓2, ✓3 denote

the parameters obtained from cycles 1, 2, and 3, respectively. The estimate of the

population parameter is defined as ✓̂ =
P3

i=1 ↵i✓i, where
P3

i=1 ↵i = 1. If the samples are

independent, then the variance is defined as V ar(✓̂) =
P3

i=1 ↵
2
iV ar(✓i). The average is

often a simple average (i.e. ↵i = 1/3 for i = 1, 2, 3), but the choice of ↵i can also be

based on the sample size, the variance, and/or the quality of data collection from each

cycle (Thomas and Wannell, 2009). The pooled method, which is the second approach

recommended by Statistics Canada, merges the raw data from each cycle to create one

large dataset. Once this is done, the weights must be scaled in order to preserve the
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total sum of weights. Without this scaling step, the sum of the weights would be much

greater than the size of the target population. The simplest way to scale the sampling

and replicate weights is to multiply each weight by 1/k, where k is the number of

combined cycles. This approach creates a sample that is representative of a population

averaged over the combined cycles (Thomas and Wannell, 2009). For example, suppose

that the 2001 CCHS and the 2003 CCHS are combined. The weights in the 2001 CCHS

and the 2003 CCHS are designed to represent the Canadian population in 2001 and

2003, respectively. Thus, combining these two cycles of the CCHS will produce a

dataset that represents an average of the 2001 and 2003 Canadian populations.

Statistics Canada recommends using the separate method when estimate summary

statistics at the provincial level and using the pooled method when estimating summary

statistics at the national level or regression parameters (Thomas and Wannell, 2009).

1.4 Causal Mediation Analysis with Survival Data

1.4.1 Mediation Analysis

Mediation analysis is commonly used in public health and social sciences research to

identify pathways in a causal model (VanderWeele, 2016). A mediator is a variable that

succeeds the exposure and precedes the outcome, while also being causally associated

with both variables (Hernán et al., 2002). As a result, a causal relationship between two

variables can be altered by changing the value of a mediator (Gelfand et al., 2016). In

this regard, the definition of a mediator is similar to that of a confounder, which is said

to distort the relationship between two variables by nature of being associated with

both variables (Szklo and Nieto, 2014). However, it is important to note the temporal

di↵erence between confounding and mediating variables; confounders occur before the

exposure, while mediators occur between the exposure and the outcome (Hernán et al.,

2002). Thus, mediators can be modified after the exposure has occurred, which makes

them candidates for targeted interventions (Gelfand et al., 2016). Mediation analysis

can be particularly useful in situations where it is infeasible, unethical, or impossible to

alter the exposure. As an example, consider low socioeconomic status, which is

consistently linked to poor health outcomes (National Center for Health Statistics,

2012). Although socioeconomic status cannot be readily changed, health disparities due
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to socioeconomic status can be addressed through variables that contribute to poor

health outcomes, such as behavioural and environmental factors.

Mediation analysis consists of decomposing the causal relationship between the

exposure and the outcome into two separate components: the indirect e↵ect, which

measures the e↵ect of the exposure that acts through the mediator, and the direct

e↵ect, which measures the e↵ect of the exposure that does not act through the mediator

(Richiardi et al., 2013). Causal mediation analysis is generally performed in one of two

ways (VanderWeele, 2016). The first approach, which is known as the di↵erence

method, compares the exposure coe�cient in a regression model before and after

adjusting for the mediator. The outcome variable is regressed against the exposure

variable (and baseline covariates) in the first model, and the mediator is added as

another covariate in the second model. To illustrate this method, let X be an exposure,

C be a vector of baseline covariates, M be a mediator, and Y be a continuous and

normally distributed outcome. Then the first regression model is defined as

E[Y |x, c] = ↵0 + ↵1x+ ↵T
3 c, (1)

while the second regression model is defined as

E[Y |x,m, c] = �0 + �1x+ �2m+ �T
3 c. (2)

With the di↵erence method, the direct and indirect e↵ects are given by �1 and ↵1 � �1,

respectively, while the total e↵ect is equal to ↵1 (VanderWeele, 2016). Another

commonly used approach is the product method, where the total and direct e↵ects are

defined in the same way as they are for the di↵erence method. However, the indirect

e↵ect is no longer obtained by subtraction; instead, the mediator is regressed against

the exposure (and baseline covariates), i.e.

E[M |x, c] = �0 + �1x+ �T
2 c, (3)

and the indirect e↵ect is given by the product �1�2 (VanderWeele, 2016). The di↵erence

and product methods are equivalent when 1) there is no interaction in the regression

model for the outcome, 2) the mediator is continuous and normally distributed, and 3)

the outcome is continuous and normally distributed (VanderWeele, 2016). Furthermore,
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the methods are approximately equivalent with a rare binary outcome (VanderWeele,

2011).

While the di↵erence and product methods are valid when both the mediator and the

outcome are continuous and normally distributed, care must be taken when these

methods are extended to other settings. For instance, when a logistic model is used to

analyze a common binary outcome, the di↵erence and product methods will not

coincide, and neither of these approaches will provide a meaningful estimate of the

direct and indirect e↵ects (VanderWeele, 2016). The divergence of the di↵erence and

product methods with a logistic model is due to the non-collapsibility property

(VanderWeele, 2016). A measure of association between two variables is said to be

non-collapsible if its marginal and conditional values do not agree (Greenland et al.,

1999). In the context of regression analysis, non-collapsibility occurs when the

coe�cient of a covariate changes when another variable is added to or removed from the

model, even if this additional variable is independent of the other covariate (Greenland

et al., 1999). As a first example, consider a linear model. Let X1 and X2 be

independent binary variables, and let Y be a normally distributed variable that depends

on X1 and X2 through the following equation: E[Y |x1, x2] = �0 + �1x1 + �2x2. Suppose

that the goal of the analysis is to measure the association between X1 and Y . This can

be accomplished by regressing Y against both X1 and X2 or against only X1. Since

linear models produce collapsible measures, the coe�cient for X1 will be unchanged

when X2 is removed from the model (Greenland et al., 1999). On the other hand,

consider a logistic model, which is used to estimate the odds ratio. Suppose once again

that X1 and X2 are independent binary variables, but now suppose that Y is a binary

variable that depends on X1 and X2 through the following equation:

log
⇣

P (Y=1|x1,x2)
1�P (Y=1|x1,x2)

⌘
= �0 + �1x1 + �2x2. In this case, a logistic model with only X1 as a

covariate will produce a coe�cient �⇤
1 , which is not necessarily equal to �1 (Greenland

et al., 1999). In general, coe�cients in a logistic model tend to increase when

independent covariates are added to the model (VanderWeele, 2016). This peculiar

property is due to the fact that the assumptions of the model are unlikely to be satisfied

in both situations, i.e. when the additional independent variable is added or removed

from the model (Greenland et al., 1999). Thus, when standard mediation analysis

techniques are applied to non-collapsible measures of association, it is generally not
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possible to determine whether changes in regression coe�cients are due to the presence

of mediation or to the fact that one or both models are likely to be misspecified.

1.4.2 Natural E↵ect Models

To address the above limitations, Lange et al. (2012) proposed a method based on the

counterfactual framework, which now referred to in the literature as the method of

natural e↵ect models. In this context, a counterfactual outcome is defined as the

outcome that would have been observed if the exposure and mediator were set to

specific values (Lange et al., 2012). Consider a setting with a binary exposure and a

continuous mediator. Let x⇤ be the unexposed state, and let x be the exposed state.

Furthermore, let mx⇤ and mx be the value that the mediator would normally take when

X = x⇤ and X = x, respectively. Then, if the mediator is assumed to be a function of

the exposure, there are four possible outcomes: YxM
x

, YxM
x

⇤ , Yx⇤M
x

, and Yx⇤M
x

⇤ . Since

it is only possible to observe one outcome for each individual, three of the four potential

outcomes will not be observed. The three unobserved outcomes are said to be

counterfactual outcomes, while the fourth observed outcome is said to be a factual

outcome. The method developed by Lange et al. (2012) decomposes the total e↵ect into

the natural direct and indirect e↵ects. Unlike controlled e↵ects, where the value of the

mediator is assumed to be fixed, natural e↵ect models allow the value of the mediator

to vary as a function of the exposure (Richiardi et al., 2013). The natural direct e↵ect

refers to the di↵erence between the counterfactual outcomes for an individual who is

unexposed compared to the same individual who is exposed, with the mediator set to

the value that it would normally take when the individual is unexposed (i.e. YxM
x

⇤ vs.

Yx⇤M
x

⇤ ). On the other hand, the natural indirect e↵ect is defined as the di↵erence

between the counterfactual outcomes for an exposed individual with mediator set to the

value it would normally take when the individual is exposed compared to the same

exposed individual with mediator set to the value it would normally take when the

individual is unexposed (i.e. YxM
x

vs. YxM
x

⇤ ). Simply put, the natural direct e↵ect

allows the outcome to vary directly as a function of the exposure, while the natural

indirect e↵ect allows only the mediator to vary as a function of the exposure. In the

former case, the value of the mediator also varies, but for a fixed value of the exposure.

Finally, the total e↵ect is obtained by allowing both the outcome and the mediator to
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depend directly on the exposure.

Natural e↵ect models are based on marginal structural models, which is a method that

uses inverse probability of treatment weighting (IPTW) to adjust for time-varying

confounders that are a↵ected by the exposure (Robins et al., 2000). The mediator is

regressed against the exposure and baseline covariates using an appropriate regression

model (i.e. linear model for continuous mediators, logistic model for binary mediators,

etc.). Next, an extended dataset is obtained by repeating the original dataset multiple

times. If the exposure is categorical with k di↵erent levels, the extended dataset will

have k di↵erent repeated datasets. Finally, a new variable, denoted X⇤, is defined to

represent all potential exposure levels. In the case of a categorical exposure with k

di↵erent levels, X⇤ is equal to the observed value of the exposure in the first repeated

dataset and to all other possible values in the remaining k � 1 repeated datasets. In the

case of a continuous exposure, Lange et al. (2012) recommend drawing five di↵erent

values from the original exposure distribution, which would result in an extended

dataset with a total of six repeated datasets. Once the dataset is extended and the

potential exposure variable is fully defined, stabilized mediation weights for each

individual are constructed by dividing the predicted probability of the mediator after

conditioning on the potential exposure variable (and the baseline covariates) by the

predicted probability of the mediator after conditioning on the exposure variable (and

the baseline covariates), i.e.

W =
P (M = m|x⇤, c)

P (M = m|x, c) . (4)

If the mediator is continuous, then the predicted probability is obtained from the

density function of the normal distribution with mean and variance equal to the fitted

value and the residual variance of the mediation model, respectively. On the other

hand, if the mediator is binary or categorical, the predicted probability is simply equal

to the fitted probability from the underlying binomial or multinomial model. In either

case, the outcome is regressed against the observed exposure (X), the counterfactual

exposure (X⇤), and the baseline covariates (C), and the stabilized mediation weights

are incorporated into the fitting procedure. The natural direct e↵ect is given by the
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coe�cient of the observed exposure (X), while the natural indirect e↵ect is given by the

coe�cient of the potential exposure (X⇤). Unlike previous methods, this approach is

not restricted to a specific setting; it can be used with any type of regression model.

According to Lange et al. (2012), conservative variance estimates can be obtained by

using a bootstrap method in general or a generalized estimating equation if the

mediation model is fitted by maximum likelihood. In this context, generalized

estimating equations produce robust variance estimates by considering the correlations

among duplicated observations in the extended dataset.

Confounding can be controlled for by incorporating the distribution of baseline

covariates directly into the mediation weights (Lange et al., 2012). Instead of including

confounders as covariates in the regression model for the outcome, the observations can

be weighted by the inverse of the exposure treatment after conditioning on the baseline

covariates. This is analogous to the method of IPTW (Robins et al., 2000; Lumley,

2010), where the stabilized weights are defined as

W =
P (X = x)

P (X = x|c) . (5)

Finally, the stabilized mediation weights can be combined with those from IPTW to

obtain

W =
P (X = x)

P (X = x|c)
P (M = m|x⇤, c)

P (M = m|x, c) . (6)

Weights obtained from IPTW can be unstable and highly variable, especially when the

fitted probabilities are close to 0 (Lumley, 2010). As a result, the weights in equation 4

will generally be more stable than those in equation 6 (Lange et al., 2012). While

natural e↵ect models can be employed with any type of regression model (Lange et al.,

2012), the natural direct and indirect e↵ects cannot always be expressed in terms of the

parameters of the mediation and outcome models (VanderWeele, 2011). In other words,

even if the mediation and outcome models are known, it may not be possible to solve

the natural direct and indirect e↵ects analytically. However, when the outcome is rare,

analytic expressions can be derived (VanderWeele, 2011). Natural e↵ect models produce
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causal estimates when the following five assumptions are satisfied: 1) no unmeasured

confounding of the exposure-outcome relationship, 2) no unmeasured confounding of

the exposure-outcome relationship, 3) no unmeasured confounding of the

mediator-outcome relationship, 4) no confounding of the mediator-outcome relationship

that is a↵ected by the exposure, and 5) the observed survival times are equal to their

corresponding factual survival times (Lange et al., 2012).

1.4.3 Natural E↵ect Models with Survival Data

The preceding sections provided examples with continuous and binary outcomes for the

sake of simplicity. While these types of outcome variables are common in public health

and social sciences research, many other measures are also used (Lumley, 2010). For

instance, instead of using a binary variable to measure the occurrence of an event

within a fixed period of time, the time until an event occurs can be considered. The

variable that denotes the time until an event occurs is referred to as a survival time

variable, and the branch of statistics that considers methods to analyze such variables is

known as survival analysis (Allison, 2010; Kleinbaum and Klein, 2011). The most

commonly used regression model for survival analysis is the Cox model (Allison, 2010),

although Accelerated Failure Time (AFT) and Aalen Additive Hazard models are also

employed in the public health and social sciences literature (Kleinbaum and Klein,

2011; Xie et al., 2013). The Cox model estimates the hazard ratio, which is defined as

the ratio of the event rate when comparing two di↵erent levels of a given variable,

assuming that all other variables are held constant (Kleinbaum and Klein, 2011). The

hazard ratio, like the odds ratio, is a non-collapsible measure (Austin et al., 2016),

which means that standard mediation analysis methods cannot be used for causal

mediation. The product method can be used with a Cox model to determine the

presence of mediation, but neither the di↵erent method nor the product method

provides a measure of the magnitude of mediation (VanderWeele, 2011). Prior to 2011,

only one method had been developed to quantify mediation in a survival context (Lange

and Hansen, 2011). However, this approach, which is known as dynamic path analysis

requires the outcome variable to be modelled on a linear scale, which means that it

cannot be extended to Cox models (Gamborg et al., 2011). Furthermore, dynamic path

analysis can be di�cult to implement with standard statistical software, and the
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coe�cients do not necessarily have a causal meaning (Lange and Hansen, 2011).

Since natural e↵ect models can be applied to any type of regression model, this

methodology can be used to define the natural direct e↵ect, the natural indirect e↵ect,

and the total e↵ect in a Cox model on the log-hazard scale, as shown in equations 7 to 9.

NDE = log[h(t|x,Mx, c)]� log[h(t|x⇤,Mx, c)] (7)

NIE = log[h(t|x⇤,Mx, c)]� log[h(t|x⇤,Mx⇤ , c)] (8)

TE = NDE +NIE = log[h(t|x,Mx, c)]� log[h(t|x⇤,Mx⇤c)] (9)
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2 Natural E↵ect Models for Survival Outcomes in a

Complex Survey Setting

2.1 Introduction

Lange et al. (2012) demonstrated the versatility and the simplicity of natural e↵ect

models by providing numerous examples in the appendix of their paper. Their approach

can applied to any type of regression model, and it can also be implemented using

standard statistical packages (Lange et al., 2012). The original paper by Lange et al.

(2012) has been cited numerous times by researchers spanning various disciplines within

public health and the social sciences. However, Lange et al. (2012) did not provide any

recommendations or guidelines regarding the implementation of their methodology in

complex survey settings. As a result, some studies have incorporated design features

into natural e↵ect models in an ad hoc manner, while others have simply disregarded

the design features altogether. For instance, Vart et al. (2015) used natural e↵ect

models to identify mediators of the association between low socioeconomic status and

chronic kidney disease in the United States. The researchers used data from the

NHANES, which is an annual health survey conducted in the United States that is

collected through a multi-stage cluster sampling scheme (Mirel et al., 2010; Johnson

et al., 2014). The authors ignored sampling weights when defining the mediation model,

and they stated that “standard errors and confidence intervals [were] determined by

bootstrap methods” (Vart et al., 2015). While this seems like a reasonable and intuitive

approach, we could not find any other studies that have addressed this issue. In other

words, it is unclear how the design features of a complex survey should be incorporated

into natural e↵ect models. Furthermore, bootstrap methods can be applied in various

di↵erent ways (Lee and Forthofer, 2006; Lumley, 2010), and it is not known which

approach should be used to obtain appropriate variance estimates in complex survey

settings. Since a great deal of research is done with complex surveys, this is an issue

that warrants further research.

The remainder of this chapter attempts to identify the optimal methodology for

estimating natural direct and indirect e↵ects for survival outcomes in a complex survey

setting through simulation studies. We considered the following three general
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approaches: 1) ignoring the weights altogether, 2) incorporating the weights as a

covariate in the regression models, and 3) incorporating the weights by weighting the

regression models. This framework was inspired by the work of Austin et al. (2016),

where the authors assessed the impact of incorporating sampling weights from a

complex survey design into propensity score models. We considered two distinct

settings: one with a binary mediator and one with a continuous mediator.

2.2 Methods

We propose five di↵erent methods for estimating the natural direct and indirect e↵ects.

First, we ignore sampling weights when defining both the mediation and Cox models

(unweighted method). Next, we include the sampling weights as a covariate in both the

mediation and Cox models (covariate mehtod). Third, we obtain mediation weights by

weighting the mediation model with scaled sampling weights, which are obtained by

multiplying the sampling weights by a constant such that their sum is equal to the

number of observations in the dataset. We then multiply the resulting mediation

weights by the sampling weights before running the Cox model (scaled weighted

method). Fourth, we implement a hybrid approach, where the sampling weights are

ignored when defining the mediation model but later incorporated into the Cox model

(hybrid method). When the mediator is continuous, the predicted probability is given

by the density function of a normal distribution with mean and variance equal to the

fitted value and the residual variance of the mediation model, respectively. Thus, the

residual variance of the mediation model for a continuous mediator must be estimated

explicitly in order to obtain appropriate mediation weights. While estimates of

regression coe�cients do not depend on the scaling of sampling weights, the same

cannot be said for variance estimates, which will be wrong if the sampling weights are

not appropriately scaled. Sampling weights denote the number of people represented in

the population, while frequency weights identify repeated observations in a dataset. In

other words, a sampling weight of 3 means that the given observation represents 3

individuals in the population from which they were sampled, while a frequency weight

of 3 means that there are 2 other identical observations in the dataset (Lumley, 2010).

The standard approach to analyzing complex survey data consists of incorporating the

sampling weights as scaled weights (Lee and Forthofer, 2006; Lumley, 2010). For the
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continuous mediator, we propose a fifth method of estimating the natural direct and

indirect e↵ects, where the sampling weights are not re-scaled prior to being

incorporated into the mediation model, which is analogous to treating the sample

weights as frequency weights (unscaled weighted method). These five approaches are

summarized in Table 1.

Table 1. Methods for Estimating the Natural Direct and Indirect E↵ects

Method Mediation Model Cox Model

Unweighted Model does not incorporate

sampling weights

Model is weighted by the me-

diation weights

Covariate Model incorporates the orig-

inal sampling weights by in-

cluding them as a covariate

Model is weighted by the medi-

ation weights and incorporates

the original sampling weights

by including them as a covari-

ate

Scaled Weighted Model is weighted by the

scaled sampling weights

Model is weighted by the prod-

uct of the mediation weights

and the original sampling

weights

Hybrid Model does not incorporate

sampling weights

Model is weighted by the prod-

uct of the mediation weights

and the original sampling

weights

Unscaled Weighted Model is weighted by the un-

scaled sampling weights

Model is weighted by the prod-

uct of the mediation weights

and the original sampling

weights

We also suggest five di↵erent variance estimators. First, we use the robust model-based

variance estimator proposed by Lange et al. (2012) (robust model-based variance). Next,

we obtain a design-based variance estimate by specifying complete design information,

i.e. stratum membership, cluster membership, and sampling weights (design-based
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variance). It is important to note that it is not possible to obtain a fully robust

design-based variance estimate as this option is not currently available in the survey

package. In other words, it is possible to account for the complex design features or the

correlations among duplicated observations, but not both simultaneously. Third, we

obtain bootstrap variance estimates by first using the original sampling weights to

define the mediation model, and then using the same mediation weights across all

bootstrap samples (partial bootstrap variance). Finally, we use the bootstrap samples to

define the mediation model, thereby creating di↵erent mediation weights for each

bootstrap sample (full bootstrap variance). For the continuous mediator, we propose two

di↵erent variance estimators based on the full bootstrap approach. Since bootstrap

samples are created by re-sampling clusters from within each stratum with replacement,

some clusters are not selected into the bootstrap sample and, thus, are assigned a

weight of zero. As a result, the number of unique observations in the bootstrap sample

will almost always be smaller than the number of observations in the original sample.

Since the residual variance depends on the scaling of the weights used in the mediation

model, we consider scaling the sampling weights 1) to the number of observations in the

original sample (unscaled full bootstrap) and 2) to the number of unique observations in

the bootstrap sample (scaled full bootstrap). To illustrate this point, consider a sample

of 5,000 observations. A typical bootstrap sample will have less than 5,000 unique

observations due to the fact that some observations are not selected into the bootstrap

sample. Suppose that 3,000 unique observations are selected into the bootstrap sample.

The sampling weights could be scaled to the number of observations in the original

sample (5,000) or to the number of unique observations in the bootstrap sample (3,000).

The former approach is the default scaling used by the glm function in the stats

package, while the latter method is the one used by the svyglm function in the survey

package. These five approaches are summarized in Table 2.
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Table 2. Methods for Estimating the Variance of the Natural Direct and Indirect E↵ects

Method Description

Robust Model-Based 1) Calculate mediation weights for the entire sample

2) Weight Cox model by the mediation weight

3) Use generalized estimating equation to obtain variance

Design-Based 1) Calculate mediation weights for the entire sample

2) Weight Cox model by the mediation weight

3) Use design information, i.e. stratum membership, clus-

ter membership, and sampling weights, to obtain variance

Partial Bootstrap 1) Calculate mediation weights for the entire sample

2) Weight Cox model by the mediation weight

3) Repeat Cox regression for each bootstrap sample to

obtain bootstrap variance

Unscaled Full Bootstrap 1) Calculate mediation weights for each replicate sample

2) Weight Cox model by the mediation weights

3) Repeat Cox regression for each bootstrap sample with

unscaled sampling weightsÜ

Scaled Full Bootstrap 1) Calculate mediation weights for each replicate sample

2) Weight Cox model by the mediation weights

3) Repeat Cox regression for each bootstrap sample with

scaled sampling weightsÜ
ÜEach bootstrap sample has a di↵erent set of mediation weights

2.3 Simulation Study

2.3.1 Simulation Study Methods

We generated a finite population using a similar setup to that previously described by

Austin et al. (2016). Briefly, the finite population consisted of 1,000,000 individuals

evenly distributed across 10 strata and 200 clusters. The strata and clusters were of

equal size, i.e. there were 20 clusters in each stratum and 5,000 individuals in each

cluster. We generated six continuous baseline covariates (C1, C2, C3, C4, C5, and C6).

To simulate a complex survey design, we incorporated both stratum-specific and
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cluster-specific random e↵ects; we defined the random variable for the ith baseline

covariate in the jth stratum and the kth cluster as Cijk ⇠ N(µij + µik, �), where µij and

µik are the stratum-specific e↵ect parameter and the cluster-specific e↵ect parameter,

respectively, i.e. µij ⇠ N(0, ⌧j) and µik ⇠ N(0, ⌧k). Simply put, for each of the six

baseline covariates, we drew two random parameters, which defined the normal

distribution from which the covariates were drawn. We set the standard deviation of

the covariates equal to 1, i.e. � = 1. This setup produced a finite population where

individuals within a given stratum and cluster were more similar than those in di↵erent

strata and clusters, and the proportion of the total variance attributed to di↵erences

between strata and clusters was given by
⌧2
j

⌧2
j

+⌧2
k

+1
and

⌧2
k

⌧2
j

+⌧2
k

+1
, respectively.

We generated a binary exposure, denoted X, by drawing from a Bernouilli distribution

with p = P (X = 1), where P (X = 1) was defined as

log

✓
P (X = 1|c)

1� P (X = 1|c)

◆
= �0 + �T c. (10)

To be consistent with the work of Austin et al. (2016), we used the following regression

coe�cients to define the binary exposure variable: �0 = log(0.0329/0.9671),

�1 = log(1.1), �2 = log(1.25), �3 = log(1.5), �4 = log(1.75), �5 = log(2), and

�6 = log(2.5). We generated the survival time, denoted T , through a proportional

hazards model with a binary exposure (X), a mediator (M), and a set of baseline

covariates (C). We used the approach developed by Bender et al. (2005), which is

described in detail in appendix A, to simulate the proportional hazards model, i.e.

h(t|x,m, c) = h(t|0, 0, 0)e�0x+�00m+�T c. (11)

We used the following regression coe�cients to define the proportional hazards model:

�0 = 0.5, �00 = log(2.5), �1 = log(1.75), �2 = log(1.75), �3 = �log(1.75),

�4 = �log(1.75), �5 = log(1.25), �6 = �log(1.25). Furthermore, we considered two

distinct setups: one with a rare exposure (3.3% prevalence) and a common outcome

(50% prevalence), and another with a common exposure (50% prevalence) and a rare

outcome (10% prevalence). In the first setup, we used the parameters described above,

and we censored all individuals whose survival time was greater than the 50th percentile

of all survival times. In the second case, we used �0 = 0 instead of
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�0 = log(0.0329/0.9671), and we censored all individuals whose survival time was

greater than the 10th percentile of all survival times.

We defined the binary mediator through a logistic model, i.e.

log
⇣

P (M=1|x,c)
1�P (M=1|x,c)

⌘
= ↵0 + ↵0x+ ↵T c, and we defined the continuous mediator through a

linear model, i.e. E[M |x, c] = ↵0 + ↵0x+ ↵T c. Then, as shown in appendices B and C,

the natural direct and indirect e↵ects are approximately equal to �0(x� x⇤) and

log

⇣
1+e↵0+↵

0
x

⇤+↵

T

c

⌘⇣
1+e↵0+↵

0
x+↵

T

c+�

00⌘

(1+e↵0+↵

0
x+↵

T

c)(1+e↵0+↵

0
x

⇤+↵

T

c+�

00)

�
for the binary mediator and �0(x� x⇤) and

�00↵0(x� x⇤) for the continuous mediator. For the binary mediator, we used the

following regression coe�cients: ↵0 = 0, ↵0 = log(2.5), ↵1 = log(1.25), ↵2 = �log(1.25),

↵3 = log(1.25), ↵4 = �log(1.25), ↵5 = log(1.75), and ↵6 = �log(1.75). It is important

to note that when the mediator is binary, the natural indirect e↵ect depends on the

level of the baseline covariates. In other words, it is possible to calculate the natural

indirect e↵ect for di↵erent levels of the baseline covariates (e.g. C1 = 0 vs. C1 = 1). To

obtain the average natural indirect e↵ect, we set each baseline covariate equal to its

average value. For the continuous mediator, we used the following regression

coe�cients: ↵0 = 0, ↵0 = 0.25, ↵1 = log(1.25), ↵2 = �log(1.25), ↵3 = log(1.25),

↵4 = �log(1.25), ↵5 = log(1.75), and ↵6 = �log(1.75). Finally, we used a standard

deviation of 0.5 to define the linear mediation model.

To obtain our samples, we drew 5,000 individuals from the finite population. We

randomly assigned one of the following sample sizes to each of the 10 strata: 250, 300,

350, 400, 450, 550, 600, 650, 700, 750. We selected 5 clusters from each stratum using

SRS, and then we sampled an equal number of individuals from within each of the 5

clusters using SRS. Next, we calculated the sampling weight for each individual, which

is simply the inverse of the selection probability. If n individuals were selected from a

stratum of size N , then the selection probability for each of the n individuals was

obtained by taking the product of the probability of selecting a cluster and the

probability of selecting an individual from within the cluster, i.e. ⇡ = ⇡Clu ⇥ ⇡Ind|Clus.

Since 5 out of 20 clusters were selected within each stratum, and since n/5 individuals

were selected from within each cluster, the probability of selecting a cluster and the

probability of selecting an individual from within the given cluster were ⇡Clu = 5
20 and

⇡Ind|Clus =
n/5
N/20 , respectively. Thus, the selection probability was given by
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⇡ = ⇡Clu ⇥ ⇡Ind|Clus =
n
N
, and the sampling weight was equal to w = 1

⇡
= N

n
. We created

500 bootstrap weights by re-sampling clusters from each stratum. To be consistent with

the sampling design of the CCHS, which re-samples n� 1 out of n clusters with

replacement from each stratum (Statistics Canada, 2002), we re-sampled 4 clusters with

replacement from each stratum and re-weighted the bootstrap samples accordingly.

We simulated 1,000 samples by making repeated draws from the finite population using

the aforementioned sampling scheme. We then applied the methods described in

Section 2.2. For each sample, we obtained multiple di↵erent estimates for both the

natural direct and indirect e↵ects (and their corresponding variances). We combined

this information to construct approximate 95% confidence intervals, i.e.

✓̂i ± 1.96⇥
q

�̂2(✓̂i), where ✓̂ and �̂2(✓̂) denote the point estimate and the variance

estimate, respectively, in the ith sample. The bias was defined as

BIAS = 1
1,000

P1,000
i=1 (✓̂i � ✓), where ✓ is the parameter of interest in the finite

population. The percentage bias was defined as 100⇥ BIAS
✓

. The MSE was defined as

MSE = 1
1,000

P1,000
i=1 (✓̂i � ✓)2, while the relative MSE was defined as MSE

✓2
. Finally,

coverage of the 95% confidence interval was calculated as the proportion of confidence

intervals that included the point estimate from the finite population. We created six

di↵erent simulation setups by varying the value of ⌧j and ⌧k, which are the

stratum-specific and cluster-specific random e↵ects parameters, respectively. We did

this in order to assess the impact of between-cluster and between-stratum variation, and

also to identify general trends across all settings. In the first three settings, we used

⌧k = 0.35 and ⌧j = 0.25, 0.15, 0.05; in the latter three settings, we used ⌧j = 0.35 and

⌧k = 0.25, 0.15, 0.05. After specifying these parameters, we determined the proportion of

the total variance attributed to di↵erences between strata and clusters.

All analyses were performed using R statistical programming language version 3.3.3 (R

Core Team, 2017). The unweighted linear models, the frequency weighted linear

models, and the unweighted logistic models were fitted using the glm function in the

stats package; the sample weighted linear models were fitted using the svyglm function

in the survey package; the weighted logistic models were fitted using the vglm function

in the VGAM package; the unweighted Cox models were fitted using the coxph function

in the survival package; the sample weighted Cox models were fitted using the svycoxph
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function in the survey package.

2.3.2 Simulation Study Results

We first considered the setup with a rare exposure (3.3% prevalence) and a common

outcome (50% prevalence). The percentage bias for the binary and continuous

mediators are presented in Figures 1 and 2. None of the methods were universally best

at reducing bias. In the case of the binary mediator, each of the four methods had the

smallest percentage bias in at least one of the six settings. We obtained nearly identical

results with the continuous mediator, with the only exception being the unscaled

weighted method, which consistently produced estimates with the largest bias (see

Figure 5). In each setting, we compared the percentage bias of the unscaled weighted

method to the estimate with the second largest percentage bias. The magnitude of the

percentage bias obtained with the unscaled weighted method was 28 to 377 times

greater than the second worst estimate in each setting. The relative MSEs are shown in

Figures 3 and 4. The unweighted and covariate methods generally produced the

smallest relative MSE. The relative MSEs for the sample weighted and hybrid methods

were similar for the natural direct e↵ect, but the relative MSE for the sample weighted

method was consistently larger than that of the hybrid method for the natural indirect

e↵ect. Finally, in the case of the continuous mediator, the unscaled weighted method

always produced estimates with the largest relative MSE (see Figure 5). Similar to our

analysis of the percentage bias, we compared the relative MSE of the unscaled weighted

method to the estimate with the second largest MSE in each setting. The relative MSE

obtained with the unscaled weighted method was 5 to 61 times greater than the second

worst estimate in each setting. We obtained nearly identical results for the setup with a

common exposure (50% prevalence) and a rare outcome (10% censoring), as shown in

appendices F and G.
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Figure 1. Percentage bias from the simulations with a binary mediator, a rare binary

exposure (3.3% prevalence), and a common outcome (50% prevalence). We considered six

di↵erent settings (by varying the proportion of the total variance attributed to di↵erences

between strata and clusters), and we implemented all methods outlined in section 2.2.

Percentage bias was defined as 1
1,000

P1,000
i=1

⇣
✓̂
i

�✓
✓

⌘
, where ✓ is the parameter of interest in

the finite population.
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Figure 2. Percentage bias from the simulations with a continuous mediator, a rare binary

exposure (3.3% prevalence), and a common outcome (50% prevalence). We considered six

di↵erent settings (by varying the proportion of the total variance attributed to di↵erences

between strata and clusters), and we implemented all methods outlined in section 2.2.

Percentage bias was defined as 1
1,000

P1,000
i=1

⇣
✓̂
i

�✓
✓

⌘
, where ✓ is the parameter of interest in

the finite population.
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Figure 3. Relative MSE from the simulations with a binary mediator, a rare binary

exposure (3.3% prevalence), and a common outcome (50% prevalence). We considered six

di↵erent settings (by varying the proportion of the total variance attributed to di↵erences

between strata and clusters), and we implemented all methods outlined in section 2.2.

Relative MSE was defined as 1
1,000

P1,000
i=1

⇣
✓̂
i

�✓
✓

⌘2
, where ✓ is the parameter of interest in

the finite population.
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Figure 4. Relative MSE from the simulations with a continuous mediator, a rare binary

exposure (3.3% prevalence), and a common outcome (50% prevalence). We considered six

di↵erent settings (by varying the proportion of the total variance attributed to di↵erences

between strata and clusters), and we implemented all methods outlined in section 2.2.

Relative MSE was defined as 1
1,000

P1,000
i=1

⇣
✓̂
i

�✓
✓

⌘2
, where ✓ is the parameter of interest in

the finite population.
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Figure 5. Complete percentage bias and relative MSE for the first setting from the

simulations with a continuous mediator, a rare binary exposure (3.3% prevalence), and a

common outcome (50% prevalence).

Coverage rates of the 95% confidence interval for both the natural direct and indirect

e↵ects obtained from the simulations with a rare exposure (3.3% prevalence) and a

common outcome (50% censoring) are presented in Tables 3 and 4. Since the findings

are nearly identical in all six settings, we present results from the first setting in the

main body of this report and refer the reader to appendices D and E for complete

results. All variance estimators produced appropriate coverage of the 95% confidence
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interval for the natural direct e↵ect, with the exception of the unscaled weighted method

in the case of the continuous mediator, where we observed considerable undercoverage

with all variance estimators. Appropriate coverage of the 95% confidence interval for

the natural indirect e↵ect was only achieved with the full bootstrap variance estimator

for the binary mediator and the scaled full bootstrap variance estimator for the

continuous mediator. All other approaches led to undercoverage of the 95% confidence

interval for the natural indirect e↵ect. We repeated the same simulations with a

common exposure (50% prevalence) and a rare outcome (10% prevalence). While the

percentage bias and the relative MSEs were similar in this second setup, coverage of the

95% confidence interval for the natural indirect e↵ect di↵ered considerably. Coverage

rates for both the binary and continuous mediators from the first setting of the second

setup are presented in Tables 7 and 8. In the case of the binary mediator, coverage of

the 95% confidence interval for the natural indirect e↵ect ranged from 47.5% to 56.8%

for variance estimators other than the full bootstrap when the exposure was rare, while

coverage ranged from 86.9% to 91.7% with these same estimators when the exposure

was common (see appendix F). We observed a similar behaviour with the continuous

mediator, where coverage rates achieved with all variance estimators other than the full

bootstrap approached improved when the exposure became more prevalent.

Table 3. Coverage of 95% CI for Natural Direct E↵ect for the first setting from the

simulations with a binary mediator, a rare binary exposure (3.3% prevalence), and a

common outcome (50% prevalence)

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9580 0.9600 0.9520 0.9500

Design-Based 0.9490 0.9470 0.9380 0.9380

Partial Bootstrap 0.9470 0.9490 0.9410 0.9390

Full Bootstrap 0.9410 0.9380 0.9350 0.9360
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Table 4. Coverage of 95% CI for Natural Indirect E↵ect for the first setting from the

simulations with a binary mediator, a rare binary exposure (3.3% prevalence), and a

common outcome (50% prevalence)

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.5210 0.5200 0.5160 0.5500

Design-Based 0.5230 0.5240 0.5070 0.5450

Partial Bootstrap 0.5230 0.5250 0.5140 0.5400

Full Bootstrap 0.9390 0.9420 0.9440 0.9440

Table 5. Coverage of 95% CI for Natural Direct E↵ect for the first setting from the

simulations with a continuous mediator, a rare binary exposure (3.3% prevalence), and a

common outcome (50% prevalence)

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9460 0.9460 0.9520 0.9480 0.3160

Design-Based 0.9340 0.9340 0.9390 0.9390 0.3150

Partial Bootstrap 0.9350 0.9380 0.9440 0.9420 0.3300

Unscaled Full Bootstrap 0.9230 0.9250 – 0.9270 0.3290

Scaled Full Bootstrap 0.9270 0.9260 0.9340 0.9340 –

Table 6. Coverage of 95% CI for Natural Indirect E↵ect for the first setting from the

simulations with a continuous mediator, a rare binary exposure (3.3% prevalence), and a

common outcome (50% prevalence)

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.5450 0.5450 0.5470 0.5630 0.0000

Design-Based 0.5310 0.5290 0.5340 0.5460 0.0000

Partial Bootstrap 0.5330 0.5310 0.5370 0.5540 0.0000

Unscaled Full Bootstrap 0.7990 0.7990 – 0.8040 0.0000

Scaled Full Bootstrap 0.9230 0.9240 0.9360 0.9210 –
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Table 7. Coverage of 95% CI for Natural Direct E↵ect for the first setting from the

simulations with a binary mediator, a common exposure (50% prevalence), and a rare

outcome (10% prevalence)

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9440 0.9440 0.9430 0.9410

Design-Based 0.9350 0.9340 0.9320 0.9330

Partial Bootstrap 0.9410 0.9390 0.9350 0.9350

Full Bootstrap 0.9400 0.9390 0.9360 0.9340

Table 8. Coverage of 95% CI for Natural Indirect E↵ect for the first setting from the

simulations with a binary mediator, a common exposure (50% prevalence), and a rare

outcome (10% prevalence)

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.8800 0.8800 0.8710 0.8880

Design-Based 0.8870 0.8850 0.8700 0.8840

Partial Bootstrap 0.8850 0.8860 0.8690 0.8830

Full Bootstrap 0.9400 0.9400 0.9250 0.9330

Table 9. Coverage of 95% CI for Natural Direct E↵ect for the first setting from the

simulations with a continuous mediator, a common exposure (50% prevalence), and a

rare outcome (10% prevalence)

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9570 0.9570 0.9610 0.9620 0.5170

Design-Based 0.9520 0.9550 0.9540 0.9520 0.5140

Partial Bootstrap 0.9530 0.9530 0.9530 0.9570 0.5200

Unscaled Full Bootstrap 0.9470 0.9480 – 0.9470 0.5200

Scaled Full Bootstrap 0.9500 0.9500 0.9530 0.9530 –
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Table 10. Coverage of 95% CI for Natural Indirect E↵ect for the first setting from the

simulations with a continuous mediator, a common exposure (50% prevalence), and a

rare outcome (10% prevalence)

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.8910 0.8900 0.9030 0.9060 0.0000

Design-Based 0.8790 0.8790 0.8910 0.8940 0.0000

Partial Bootstrap 0.8810 0.8790 0.8950 0.8930 0.0000

Unscaled Full Bootstrap 0.7980 0.7950 – 0.7960 0.0000

Scaled Full Bootstrap 0.9330 0.9340 0.9400 0.9360 –

2.4 Case Study

In this section, we provide a practical example to illustrate the application of natural

e↵ect models to survival outcomes in a complex survey setting. We considered the

relationship between shift work and diabetes among adults in Ontario using a

retrospective cohort design, and we used natural e↵ect models to determine whether

this relationship was mediated by job stress. Our cohort included all individuals who 1)

participated in the 2001 or 2003 CCHS, 2) agreed to have their data shared for research

purposes, and 3) were between the ages of 35 and 69 at the time of record linkage

(December 31, 2001 and December 31, 2003, respectively). Since the findings of such an

analysis could lead to important workplace interventions, we excluded all individuals

who were unemployed, self-employed, or who worked in a family business without pay.

Finally, we excluded all individuals who had been diagnosed with diabetes at the time of

the initial interview. Thus, our cohort consisted of 17,441 working-age men and women

living in Ontario who were diabetes-free at the start of the follow-up period. We defined

shift work to be any work pattern consisting or regular night shifts or rotating shifts.

The outcome of interest was diabetes, and we obtained the time of diabetes diagnosis

by record linkage through ICES. Approval for this study was obtained from Queen’s

University Health Sciences & A�liated Teaching Hospitals Research Ethics Board

(HSREB), and a copy of the ethics clearance form is included at the end of this report.
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To measure job stress, the CCHS includes 12 questions related to various di↵erent

psychosocial job characteristics. The interviewer reads a statement about a specific job

characteristic, and the participants are asked to indicate how strongly they agree with

the given statement. For example, the first statement reads, “Please tell me if you

strongly agree, agree, neither agree nor disagree, disagree, or strongly disagree. Your

job required that you learn new things” (Statistics Canada, 2003a). The answers are

scored on a scale from 1 (strongly disagree) to 5 (strongly agree), and the questions are

combined to produce the following six measures, which are derived from the Job

Content Questionnaire (Karasek et al., 1998): 1) skill discretion, 2) decision authority,

3) psychological demands, 4) job insecurity, 5) physical exertion, and 6) social support.

The composite variables are scored using scales from 0 to 4, 0 to 8, or 0 to 12, and these

variables are then combined to produce an overall measure of job stress with values

ranging from 0 to 48 (Statistics Canada, 2003b). To be consistent with Smith et al.

(2012), who examined the relationship between job stress and the incidence of diabetes

among adults in Ontario, we did not include job insecurity or physical exertion in our

definition of job stress. In other words, we only considered skill discretion, decision

authority, psychological demands, and social support; we combined these four variables

to obtain an overall measure of job stress. Decision latitude (skill discretion) and social

support are measured on a scale from 0 to 12, while decision latitude (decision

authority) and psychological demands are given in terms of an 8-point scale. Thus, the

overall measure of job stress can be treated as a continuous variable with values ranging

from 0 to 40.

To be consistent with the literature, we treated the following variables as confounders:

age, sex, education, ethnicity, marital status, BMI, physical activity, smoking status,

alcohol consumption. A systematic review published in 2014 identified six cohort

studies that considered the relationship between shift work and diabetes (Knutsson

et al., 2014). According to this systematic review, the most important confounders are

age, BMI, family history of diabetes, smoking status, and physical activity (Knutsson

et al., 2014). All of the studies identified in this systematic review included either only

males or only females. Since our dataset included both men and women, we also

adjusted for sex. Finally, in addition to the most important confounders suggested by

Knutsson et al. (2014), we also considered education, ethnicity, marital status, and
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alcohol consumption as potential confounders. All of these additional variables were

included in at least one of the studies included in the systematic review (Knutsson

et al., 2014), and we believed that it was possible for each one of these variable to be

causally associated with both shift work and diabetes diagnosis.

We used natural e↵ect models (as described in Section 2.2) to determine whether job

stress was a mediator of the relationship between shift work and diabetes diagnosis in

our cohort. In order to satisfy the assumptions of natural e↵ect models (Lange et al.,

2012), we included confounders of the exposure-mediator and mediator-outcome

relationships. In other words, we considered all confounders of the following

relationships: 1) shift work and job stress (Knutsson and Nilsson, 1997; Bøggild et al.,

2001), and 2) job stress and diabetes Smith et al. (2012). The complete list of

confounders is presented in a causal diagram in Figure 6. We defined the mediator

variable to be the total measure of job stress, which was given in terms of a scale from 0

to 40. We performed two separate mediation analyses, treating job stress as a binary

variable in the first and as a continuous variable in the second. We defined the binary

mediator by using the population median of the total measure of job stress as the

binary cut-point; in other words, all individuals who reported having a total job stress

greater than the population median were considered to be exposed, while all other

individuals were considered to be unexposed. To obtain the populaton median, we used

the svyquantile function, which uses sampling weights to compute the quantiles in the

population from which the sample is drawn (Lumley, 2010).
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Figure 6. Causal diagram of the relationship between shift work, job stress, and diabetes.

We considered all methods outlined in Section 2.2 that could be implemented with the

design information provided with the CCHS dataset. We obtained point estimates for

both the binary and continuous mediator using the following methods: unweighted,

covariate, sample weighted, and hybrid. In the case of the continuous mediator, we also

implemented the unscaled weighted method. While we were able to obtain point

estimates for all of these approaches, we could only implement a limited number of

variance estimators. Statistics Canada does not release stratum and cluster membership

information for the CCHS, which means that we could not use the design-based

variance estimator. Bootstrap samples are created by re-sampling clusters from within

each stratum with replacement. Thus, stratum and cluster membership must be known

in order to use the partial bootstrap and full bootstrap variance estimators generally.

Statistics Canada creates a set of 500 replicate weights, which are obtained by first

creating bootstrap samples by re-sampling n� 1 clusters from within each stratum with

replacement. Each bootstrap sample is then multiplied by the sampling weight and
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post-stratified separately. Since the bootstrap samples are embedded in the replicate

weights, the partial bootstrap and full bootstrap variance estimators can only be

implemented with the scaled weighted and unscaled weighted methods. In our analysis,

we found that none of the methods produced statistically significant estimates of either

the natural direct e↵ect or the natural indirect e↵ect. Complete estimates of the natural

direct and indirect e↵ects for both the binary and continuous mediators are presented in

Tables 11 to 14.

Table 11. 95% CI of Natural Direct E↵ect (Job Stress as a Binary Variable)

Method Unweighted Covariate
Scaled

Weighted
Hybrid

Point Estimate -0.007 -0.004 -0.053 -0.049

Robust Model-Based (-0.17,0.15) (-0.17,0.16) (-0.28,0.17) (-0.28,0.18)

Design-Based – – – –

Partial Bootstrap – – (-0.28,0.17) (-0.28,0.18)

Full Bootstrap – – (-0.28,0.17) –

n = 9, 601 (excluded 7,840 individuals with missing data)

Table 12. 95% CI of Natural Indirect E↵ect (Job Stress as a Binary Variable)

Method Unweighted Covariate
Scaled

Weighted
Hybrid

Point Estimate 0.001 0.002 0.005 0.004

Robust Model-Based (-0.02,0.02) (-0.02,0.02) (-0.02,0.03) (-0.02,0.03)

Design-Based – – – –

Partial Bootstrap – – (-0.02,0.03) (-0.02,0.03)

Full Bootstrap – – (-0.02,0.03) –

n = 9, 601 (excluded 7,840 individuals with missing data)
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Table 13. 95% CI of Natural Direct E↵ect (Job Stress as a Continuous Variable)

Method Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Point Estimate 0.058 0.060 -0.015 -0.009 -0.050

Robust Model-Based (-0.16,0.28) (-0.16,0.28) (-0.26,0.23) (-0.26,0.24) (-0.26,0.16)

Design-Based – – – – –

Partial Bootstrap – – (-0.25,0.22) (-0.25,0.23) (-0.26,0.16)

Unscaled Full Bootstrap – – – – (-0.26,0.16)

Scaled Full Bootstrap – – (-0.26,0.23) – –

n = 9, 601 (excluded 7,840 individuals with missing data)

Table 14. 95% CI of Natural Indirect E↵ect (Job Stress as a Continuous Variable)

Method Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Point Estimate -0.036 -0.035 -0.014 -0.017 0.000

Robust Model-Based (-0.11,0.04) (-0.11,0.04) (-0.06,0.04) (-0.07,0.04) (0.00,0.00)

Design-Based – – – – –

Partial Bootstrap – – (-0.07,0.04) (-0.07,0.04) (0.00,0.00)

Unscaled Full Bootstrap – – – – (0.00,0.00)

Scaled Full Bootstrap – – (-0.07,0.05) – –

n = 9, 601 (excluded 7,840 individuals with missing data)

2.5 Discussion

We conducted a series of simulations in order to identify the optimal methodology for

estimating natural direct and indirect e↵ects for survival outcomes in a complex survey

setting with both binary and continuous mediators. We obtained four di↵erent point

estimates using the following approaches: 1) excluding sampling weights altogether, 2)

incorporating the sampling weights as a covariate in both the mediation and Cox

models, 3) incorporating the scaled sampling weights by weighting both the mediation

and Cox models, and 4) ignoring the sampling weights when defining the mediation

model but later incorporating them by weighting the Cox model. In the case of the
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continuous mediator, we also considered unscaled sampling weights to obtain a fifth

estimate. We assessed the performance of each method by comparing percentage bias,

relative MSE, and coverage rates of the 95% confidence interval.

Based on the results of our simulations, we conclude that none of the methods are

universally best. For the binary mediator, we obtained similar percentage bias for both

the natural direct and indirect e↵ects using all four methods. However, we noted a

di↵erence in terms of relative MSE; the methods that did not weight the Cox model by

the sampling weights were consistently better than their weighted counterparts. We

observed nearly identical results with a continuous mediator. We also implemented an

additional method that was not considered for the binary mediator. When we used

unscaled sampling weights, which is analogous to specifying frequency weights instead

of sampling weights, the percentage bias and the relative MSE increased drastically.

While misspecifying the type of weight in a regression model will not a↵ect the point

estimates of the regression coe�cients, it will lead to incorrect variance estimates. In

our simulations, we noticed that the residual variance was much greater when we

treated the sampling weights as frequency weights. Interestingly, the natural indirect

e↵ect converged to 0 in this situation. These findings highlight the importance of

correctly specifying the sampling weights when using natural e↵ect models with a

continuous mediator. In other words, the sampling weights should always be multiplied

by a scaling factor such that their sum is equal to the number of observations in the

dataset. Thus, if a dataset contains n observations, the mediation weights should be

divided by the sum of the weights and then multiplied by n.

We also compared the performance of di↵erent variance estimators. First, we used the

robust model-based variance estimator suggested by Lange et al. (2012). We compared

this estimator to a fully design-based variance estimator and to two types of bootstrap

variance estimators. The first bootstrap approach consisted of repeating only the Cox

model (i.e. same mediation weights for all bootstrap samples), while the second was

obtained by re-defining the mediation model for each bootstrap sample (i.e. di↵erent set

of mediation weights for each bootstrap sample). For the binary mediator, we obtained

appropriate coverage of the 95% confidence interval for the natural direct e↵ect with all

methods and variance estimators. However, appropriate coverage of the 95% confidence
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interval for the natural indirect e↵ect was only achieved when we re-defined the

mediation model for each bootstrap sample; all other variance estimators led to

undercoverage. We observed similar results with the continuous mediator, where all

variance estimators produced undercoverage of the 95% confidence interval for the

natural indirect e↵ect, with the exception of the situation where we re-defined the

mediation model for each setting. For the continuous mediator, we implemented this

technique in two di↵erent ways. First, we used the weights of the original sample and,

second, we re-scaled the weights such that their sum was equal to the number of unique

observations in the bootstrap sample. The latter approach produced appropriate

coverage rates, while the former approach did not. Furthermore, when we treated the

sampling weights as frequency weights, we obtained very poor coverage of the 95%

confidence interval for both the natural direct and indirect e↵ects, which is mostly due

to the bias described in the preceding paragraph. Thus, we conclude that it is

important to perform a full bootstrap in order to obtain appropriate variance estimates

of the natural indirect e↵ect (for both binary and continuous mediators). In other

words, the mediation model should be re-defined for each bootstrap sample. Finally,

with a continuous mediator, the bootstrap weights should be re-scaled to the number of

unique observations in the bootstrap sample.

We performed simulations using two distinct setups. First, we considered a rare

exposure (3.3% prevalence) with a common outcome (50% prevalence) and, second, we

considered a common exposure (50% prevalence) with a rare outcome (10% prevalence).

Both of these setups resulted in undercoverage of the 95% confidence interval for the

natural indirect e↵ect when a full bootstrap approach was not employed. However,

coverage rates improved when we increased the prevalence of the exposure (see

appendices F and G). The only exception to this occurred when we treated the

sampling weights as frequency weights, where coverage rates were 0.0% in all settings

for both setups. The fact that coverage of the natural indirect e↵ect improves as the

prevalence of the exposure increases can be explained as follows. The mediation model

is obtained by regressing the mediator against the exposure and baseline covariates.

The variance of a binary covariate in both linear and logistic models is minimized when

the covariate has a prevalence of 50%, as shown in appendix H. As a result, the

mediation weights become more variable when the exposure becomes increasingly rare.
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The variance estimators that produce undercoverage all employ a single set of

mediation weights based on the full sample, which means that they do not account for

this source of variability. Thus, all methods other than the approach that re-defines the

mediation model for each bootstrap sample underestimate the true variance, and the

discrepancy between these estimates and the true variance becomes more pronounced

when the exposure is rare.

In the last section of this report, we considered a practical example to illustrate the

application of natural e↵ect models to survival outcomes in a complex survey setting.

Through this example, we showed that only one of the proper variance estimators could

be implemented with both binary and continuous mediators. This is due to the fact

that Statistics Canada does not release design information, which is necessary to create

bootstrap samples. Instead, the CCHS dataset includes 500 replicate weights, which are

each post-stratified separately. As a result, all design information is embedded in the

replicate weights, and a full bootstrap can only be achieved if both the mediation model

and the Cox model are weighted by the replicate weights. Thus, we conclude that

analysts wishing to implement natural e↵ect models with data from complex surveys

should perform a full bootstrap with weighted mediation and Cox models if they are

provided with replicate weights but not design information. However, we note that the

full bootstrap variance estimator performs equally well when the Cox model is not

weighted by the sampling weights. In fact, in our simulations, the MSE was slightly

smaller when the Cox model was not weighted by the sampling weights. Thus, it may

be preferable to use one of the unweighted methods if appropriate bootstrap samples

can be created from the available design information.
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A Simulating Proportional Hazards Model

Linear models can be simulated by specifying the desired regression coe�cients and

drawing a random error term for each data point (Bender et al., 2005). The simplicity

of this approach is due to the fact that the variables and the regression coe�cients are

defined on the same scale (i.e. in a simple linear model, a one unit increase of the

independent variable leads to a change of the dependent variable by a factor equal to

the regression coe�cient). Advanced methodology must be employed to create

simulated models when the relationship between variables and regression coe�cients is

more elaborate (Bender et al., 2005). This is especially true for proportional hazards

models, where the regression coe�cients are defined on the hazard scale, while the

dependent variable is given as a unit of time (Kleinbaum and Klein, 2011). In addition

to the challenge of reconciling these quantities, proportional hazards models must also

be simulated in a way that ensures that the proportional hazards assumption is

satisfied. Fully parametric models that satisfy the proportional hazards assumption,

such as the exponential, Weibull, and Gompertz distributions, can be employed (Bender

et al., 2005). However, it is not obvious how the parameters of the fully parametric

distributions relate to those in a proportional hazards model. In other words, it is easy

to generate survival times that satisfy the proportional hazards assumption, but it can

be di�cult to determine the value of the expected regression coe�cients in the

corresponding proportional hazards model. Bender et al. (2005) developed a technique

to simulate proportional hazards models with pre-determined parameters by using

exponential, Weibull, and Gompertz distributions. Since the exponential and Weibull

distributions satisfy both the proportional hazards assumption and the AFT

assumption, they are more general than the Gompertz distribution, which violates the

AFT assumption (Kleinbaum and Klein, 2011). Furthermore, the exponential

distribution is special case of the Weibull distribution that assumes a constant hazard

(Kleinbaum and Klein, 2011). Due to this strong restriction, we chose to use the

Weibull distribution to simulate survival times.

The density function of the Weibull distribution is defined for ⇢ > 0 and � > 0 as

f(t|�, ⇢) = ⇢�t⇢�1e��t⇢ . (12)
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Note that ⇢ is said to be the shape parameter, while � is said to the be the scale

parameter. The Weibull distribution reduces to the exponential distribution when ⇢ = 1

(Kleinbaum and Klein, 2011).

The survival and cumulative hazard functions of the Weibull distribution can be derived

from the above density function, as shown in equations 13 and 14.

S(t|�, ⇢) =
Z 1

t

f(u|�, ⇢)du =

Z 1

t

⇢�t⇢�1e��t⇢du = e��t⇢ (13)

H(t|�, ⇢) = �logS(t|�, ⇢) = �t⇢ (14)

The hazard function of the proportional hazards model is defined as

h(t|x,m, c) = h0(t)e�1x+�2m+�T

3 c. Thus, the cumulative hazard function of the

proportional hazards model is equal to

H(t|x,m, c) =

Z t

0

h(u|x,m, c)du =

Z t

0

h0e
�1x+�2m+�T

3 cdu = H0(t)e
�1x+�2m+�T

3 c. (15)

Since H(t|x,m, c) = �logS(t|x,m, c), then S(t|x,m, c) = e�H(t|x,m,c).

Let U ⇠ Uniform[0, 1]. In general, if FX(x) is the cumulative distribution of a random

variable X, then FX(X) ⇠ U (Mood et al., 1974). In this case, we have

F (t|x,m, c) = 1� S(t|x,m, c) ⇠ U . Thus, S(t|x,m, c) ⇠ 1� U , which is equivalent to

S(t|x,m, c) ⇠ U . As a result, the above equation can be written as

U = e�H(t|x,m,c) = e�H0(t)e
�1x+�2m+�

T

3 c

. (16)

Next, we can solve for H0(t), i.e.

U = e�H0(t)e
�1x+�2m+�

T

3 c

! �log(U)

e�1x+�2m+�T

3 c
= H0(t). (17)

In the case of the Weibull distribution, we have H0(t|�, ⇢) = �t⇢, which means the above

equation reduces to

�log(U)

e�1x+�2m+�T

3 c
= �t⇢ ! t =

✓
�log(U)

�e�1x+�2m+�T

3 c

◆1/⇢

. (18)
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We generated survival times corresponding to a proportional hazards model using the

approach developed by Bender et al. (2005). To demonstrate this method, we simulated

survival times for the following proportional hazards model:

h(t|x1, x2) = h(t|0, 0, 0)e�1x1+�2x2 . (19)

Setting #1 Setting #2 Setting #3 Setting #4

Coe�cients �1 = 2, �2 = 2 �1 = 2, �2 = 2 �1 = 2, �2 = �2 �1 = 2, �2 = �2

Parameters ⇢ = 2, � = 10�2 ⇢ = 0.5, � = 10�2 ⇢ = 2, � = 10�2 ⇢ = 0.5, � = 10�2

�̂1 2.0003 2.0010 1.9993 1.9999

�̂2(�̂1) 7.0089⇥ 10�4 7.0129⇥ 10�4 7.0045⇥ 10�4 7.0067⇥ 10�4

�̂2
BS(�̂1) 6.9117⇥ 10�4 7.3424⇥ 10�4 6.3164⇥ 10�4 6.8122⇥ 10�4

�̂2 2.0008 2.0009 -1.9998 -1.9990

�̂2(�̂2) 7.0093⇥ 10�4 7.0131⇥ 10�4 7.0063⇥ 10�4 7.005⇥ 10�4

�̂2
BS(�̂2) 7.1999⇥ 10�4 7.2482⇥ 10�4 7.3384⇥ 10�4 6.6583⇥ 10�4

⇢̂ 2.0000 0.5000 2.0094 0.5000

�̂ 1.0005⇥ 10�2 9.9974⇥ 10�3 9.9842⇥ 10�3 1.0012⇥ 10�2

1,000 iterations with 10,000 individuals each

In the above table, �̂ is given by the average coe�cient across all simulations.

Furthermore, �̂2 refers to the average model-based variance estimate (average across all

simulations), while �̂2
BS refers to the bootstrap variance estimate. These results

demonstrate that our approach generated survival times corresponding to a

proportional hazards model with pre-defined parameters. The bootstrap variance

estimates were also approximately equal to the model-based variance estimates.
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B Natural Direct and Indirect E↵ects for Cox

Model (Binary Mediator)

Let X be an exposure, C be a set of baseline covariates, M be a mediator, and T be a

survival time. Furthermore, let h(t|x,m, c) and H(t|x,m, c) =
R t

0 h(s|x,m, c)ds be the

hazard and cumulative hazard functions, respectively. Then the Cox model is defined as

h(t|x,m, c) = h(t|0, 0, 0)e�1x+�2m+�T

3 c. (20)

If the mediator is binary, then the mediation model is defined as

log

✓
P (M = 1|x, c)

1� P (M = 1|x, c)

◆
= ↵0 + ↵1x+ ↵T

2 c. (21)

By re-writing the hazard function as the density function divided by the survival

function, Valeri and VanderWeele (2015) showed that the hazard function can be solved

analytically if the following four assumptions hold: 1) no unmeasured confounding of

the exposure-outcome relationship, 2) no unmeasured confounding of the

mediator-outcome relationship, 3) no unmeasured confounding of the exposure-mediator

relationship, 4) no confounding of the mediator-outcome relationship that is a↵ected by

the exposure. Let Mx denote the counterfactual value of the mediator for X = x, and

let TxM
x

denote the counterfactual survival time for X = x. If the exposure is binary,

then there are two possible levels: the exposed state (X = x), and the unexposed state

(X = x⇤). The hazard function can be written as

hT
x

M
x

⇤ (t|c) =
fT

x

M
x

⇤ (t|c)
ST

x

M
x

⇤ (t|c)
=

R
h(t|0, 0, 0)e�1x+�2m+�3ce�H(t|0,0,0)e�1x+�2m+�3cdmR

e�H(t|0,0,0)e�1x+�2m+�3cdm
. (22)

The above equation can be further simplified if the outcome is rare, i.e. if less than 10%

of the events are observed before the end of the follow-up period (VanderWeele, 2016).

If the outcome is rare, then H(t|0, 0, 0) ⇡ 0, which means that e�H(t|0,0,0) ⇡ 1. The

above equation reduces to
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hT
x

M
x

⇤ (t|c) =
fT

x

M
x

⇤ (t|c)
ST

x

M
x

⇤ (t|c)

⇡ h(t|0, 0, 0)e�1x+�3c

Z
e�2mdm

⇡ h(t|0, 0, 0)e�1x+�3cE[e�2M ].

(23)

Recall that M is a binomial random variable with p = e↵0+↵1x+↵

T

2 c

1+e↵0+↵1x+↵

T

2 c

. Then, the moment

generating function is defined as

E[etM ] = 1� p+ pet. (24)

Thus, the hazard function can be re-written as

hT
x

M
x

⇤ (t|c) ⇡ h(t|0, 0, 0)e�1x+�3cE[e�2M ]

⇡ h(t|0, 0, 0)e�1x+�3c

 
1� e↵0+↵1x⇤+↵T

2 c

1 + e↵0+↵1x⇤+↵T

2 c
+

e↵0+↵1x⇤+↵T

2 c

1 + e↵0+↵1x⇤+↵T

2 c
e�2

!

⇡ h(t|0, 0, 0)e�1x+�3c

 
1 + e↵0+↵1x⇤+↵T

2 c+�2

1 + e↵0+↵1x⇤+↵T

2 c

!
.

(25)

Recall that the natural direct is defined as the di↵erence between the counterfactual

outcomes for an individual who is unexposed compared to the same individual who is

exposed, with the mediator set to the value it would normally take when the individual

is unexposed. Similarly, the natural indirect e↵ect is defined as the di↵erence between

the counterfactual outcomes for an individual with mediator set to the value it would

normally take when the individual is exposed compared to the same individual with

mediator set to the value it would normally take when the individual is unexposed. In

this case, the individual is assumed to be exposed. Finally, the total e↵ect is defined as

the di↵erence between the counterfactual outcome for an individual who is exposed

with the mediator set to the value it would normally take when an individual is exposed

compared to the same individual who is unexposed with the mediator set to the value it

would normally take when an individual is unexposed (Richiardi et al., 2013). Thus, the

natural direct e↵ect, the natural indirect e↵ect, and the total e↵ect can be summarized

on the hazard ratio scale when the survival time is rare.
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gNDE =
hT

x

M
x

⇤ (t|c)
hT

x

⇤M
x

⇤ (t|c)

⇡
h(t|0, 0, 0)e�1x+�3c

⇣
1+e↵0+↵1x

⇤+↵

T
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⌘
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T

2 c

⌘
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(26)

gNIE =
hT

x

M
x

(t|c)
hT

x

M
x
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The natural direct e↵ect, the natural indirect e↵ect, and the total e↵ect can also be

presented on the log-hazard scale.

NDE = log [hT
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M
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⇤ (t|c)]� log [hT
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C Natural Direct and Indirect E↵ects for Cox

Model (Continuous Mediator)

Let X be an exposure, C be a set of baseline covariates, M be a mediator, T be a

survival time. Furthermore, let h(t|x,m, c) and H(t|x,m, c) =
R t

0 h(s|x,m, c)ds be the

hazard and cumulative hazard functions, respectively. Then the Cox model is defined as

h(t|x,m, c) = h(t|0, 0, 0)e�1x+�2m+�T

3 c. (32)

If the mediator is continuous and normally distributed, then the mediation model is

defined as

E[M |x, c] = ↵0 + ↵1x+ ↵T
2 c. (33)

By re-writing the hazard function as the density function divided by the survival

function, VanderWeele (2011) showed that the hazard function can be solved

analytically if the following four assumptions hold: 1) no unmeasured confounding of

the exposure-outcome relationship, 2) no unmeasured confounding of the

mediator-outcome relationship, 2) no unmeasured confounding of the exposure-mediator

relationship, 4) no confounding of the mediator-outcome relationship that is a↵ected by

the exposure. Let Mx denote the counterfactual value of the mediator for X = x, and

let TxM
x

denote the counterfactual survival time for X = x. If the exposure is binary,

then there are two possible levels: the exposed state (X = x), and the unexposed state

(X = x⇤). The hazard function can be written as

hT
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M
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(34)

The above equation can be further simplified if the outcome is rare, i.e. if less than 10%

of the events are observed before the end of the follow-up period (VanderWeele, 2016).

If the outcome is rare, then H(t|0, 0, 0) ⇡ 0, which means that eH(t|0,0,0) ⇡ 1. The above

equation reduces to
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Thus, the log-hazard function is equal to

log [hT
x

M
x
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2
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(36)

Recall that the natural direct is defined as the di↵erence between the counterfactual

outcomes for an individual who is unexposed compared to the same individual who is

exposed, with the mediator set to the value it would normally take when the individual

is unexposed. On the other hand, the natural indirect e↵ect is defined as the di↵erence

between the counterfactual outcomes for an individual with mediator set to the value it

would normally take when the individual is exposed compared to the same individual

with mediator set to the value it would normally take when the individual is unexposed.

In this case, the individual is assumed to be exposed. Finally, the total e↵ect is defined

as the di↵erence between the counterfactual outcome for an individual who is exposed

with the mediator set to the value it would normally take when an individual is exposed

compared to the same individual who is unexposed with the mediator set to the value it

would normally take when an individual is unexposed. On the log-hazard scale, the

total e↵ect is simply the sum of the natural direct and indirect e↵ects (Richiardi et al.,

2013). Thus, the natural direct e↵ect, the natural indirect e↵ect, and the total e↵ect

can be summarized on the log-hazard scale when the survival time is rare.

NDE = log [hT
x

M
x

⇤ (t|c)]� log [hT
x

⇤M
x

⇤ (t|c)] ⇡ �1(x� x⇤) (37)

NIE = log [hT
x

M
x

(t|c)]� log [hT
x

M
x

⇤ (t|c)] ⇡ �2↵1(x� x⇤) (38)

TE = NDE +NIE = log [hT
x

M
x

(t|c)]� log [hT
x

⇤M
x

⇤ (t|c)] ⇡ (�2↵1 + �1)(x� x⇤) (39)
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D Coverage Rates (Binary Mediator)

Coverage of the 95% confidence interval for both the natural direct and indirect e↵ects

for the binary mediator are presented in the following tables.

Coverage of 95% confidence interval for NDE

Stratum: 5.3%, Cluster: 10.3%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9580 0.9600 0.9520 0.9500

Design-Based 0.9490 0.9470 0.9380 0.9380

Partial Bootstrap 0.9470 0.9490 0.9410 0.9390

Full Bootstrap 0.9410 0.9380 0.9350 0.9360

Stratum: 2.0%, Cluster: 10.3%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9530 0.9530 0.9510 0.9500

Design-Based 0.9460 0.9480 0.9480 0.9460

Partial Bootstrap 0.9470 0.9470 0.9470 0.9460

Full Bootstrap 0.9360 0.9370 0.9400 0.9400

Stratum: 0.2%, Cluster: 10.3%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9510 0.9500 0.9570 0.9560

Design-Based 0.9410 0.9410 0.9390 0.9370

Partial Bootstrap 0.9430 0.9410 0.9410 0.9450

Full Bootstrap 0.9370 0.9380 0.9310 0.9330
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Stratum: 10.3%, Cluster: 5.3%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9530 0.9530 0.9460 0.9450

Design-Based 0.9410 0.9420 0.9380 0.9410

Partial Bootstrap 0.9450 0.9470 0.9390 0.9440

Full Bootstrap 0.9390 0.9400 0.9330 0.9350

Stratum: 10.3%, Cluster: 2.0%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9580 0.9580 0.9510 0.9470

Design-Based 0.9450 0.9430 0.9470 0.9400

Partial Bootstrap 0.9460 0.9450 0.9460 0.9450

Full Bootstrap 0.9390 0.9390 0.9400 0.9400

Stratum: 10.3%, Cluster: 0.2%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9570 0.9570 0.9540 0.9520

Design-Based 0.9530 0.9510 0.9520 0.9500

Partial Bootstrap 0.9550 0.9550 0.9550 0.9520

Full Bootstrap 0.9500 0.9480 0.9450 0.9440
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Coverage of 95% confidence interval for NIE

Stratum: 5.3%, Cluster: 10.3%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.5210 0.5200 0.5160 0.5500

Design-Based 0.5230 0.5240 0.5070 0.5450

Partial Bootstrap 0.5230 0.5250 0.5140 0.5400

Full Bootstrap 0.9390 0.9420 0.9440 0.9440

Stratum: 2.0%, Cluster: 10.3%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.5360 0.5350 0.5320 0.5530

Design-Based 0.5260 0.5300 0.5400 0.5610

Partial Bootstrap 0.5260 0.5280 0.5400 0.5680

Full Bootstrap 0.9400 0.9400 0.9490 0.9380

Stratum: 0.2%, Cluster: 10.3%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.5150 0.5130 0.4960 0.5310

Design-Based 0.5230 0.5190 0.5130 0.5310

Partial Bootstrap 0.5170 0.5200 0.5110 0.5270

Full Bootstrap 0.9490 0.9490 0.9560 0.9430
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Stratum: 10.3%, Cluster: 5.3%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.5160 0.5110 0.5160 0.5350

Design-Based 0.5090 0.5050 0.5130 0.5340

Partial Bootstrap 0.5110 0.5070 0.5100 0.5370

Full Bootstrap 0.9410 0.9410 0.9460 0.9450

Stratum: 10.3%, Cluster: 2.0%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.4810 0.4850 0.4880 0.5270

Design-Based 0.4750 0.4770 0.4820 0.5070

Partial Bootstrap 0.4790 0.4810 0.4780 0.5100

Full Bootstrap 0.9420 0.9420 0.9420 0.9460

Stratum: 10.3%, Cluster: 0.2%

Variance Estimator Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.5160 0.5150 0.5290 0.5450

Design-Based 0.5250 0.5220 0.5240 0.5410

Partial Bootstrap 0.5240 0.5200 0.5250 0.5400

Full Bootstrap 0.9430 0.9430 0.9380 0.9450
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E Coverage Rates (Continuous Mediator)

Coverage of the 95% confidence interval for both the natural direct and indirect e↵ects

for the continuous mediator are presented in the following tables.

Coverage of 95% confidence interval for NDE

Stratum: 5.3%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9460 0.9460 0.9520 0.9480 0.3160

Design-Based 0.9340 0.9340 0.9390 0.9390 0.3150

Partial Bootstrap 0.9350 0.9380 0.9440 0.9420 0.3300

Unscaled Full Bootstrap 0.9230 0.9250 – 0.9270 0.3290

Scaled Full Bootstrap 0.9270 0.9260 0.9340 0.9340 –

Stratum: 2.0%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9510 0.9490 0.9460 0.9470 0.3340

Design-Based 0.9430 0.9420 0.9380 0.9430 0.3230

Partial Bootstrap 0.9450 0.9450 0.9450 0.9460 0.3270

Unscaled Full Bootstrap 0.9300 0.9290 – 0.9300 0.3270

Scaled Full Bootstrap 0.9360 0.9350 0.9320 0.9310 –
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Stratum: 0.2%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9550 0.9550 0.9560 0.9560 0.3690

Design-Based 0.9440 0.9440 0.9460 0.9440 0.3760

Partial Bootstrap 0.9480 0.9480 0.9500 0.9480 0.3840

Unscaled Full Bootstrap 0.9360 0.9350 – 0.9310 0.3830

Scaled Full Bootstrap 0.9380 0.9360 0.9400 0.9390 –

Stratum: 10.3%, Cluster: 5.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9530 0.9530 0.9620 0.9580 0.3240

Design-Based 0.9430 0.9430 0.9550 0.9530 0.3150

Partial Bootstrap 0.9460 0.9450 0.9580 0.9550 0.3220

Unscaled Full Bootstrap 0.9270 0.9290 – 0.9340 0.3220

Scaled Full Bootstrap 0.9330 0.9310 0.9440 0.9460 –

Stratum: 10.3%, Cluster: 2.0%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9500 0.9500 0.9520 0.9490 0.3420

Design-Based 0.9490 0.9490 0.9520 0.9520 0.3550

Partial Bootstrap 0.9500 0.9490 0.9520 0.9540 0.3630

Unscaled Full Bootstrap 0.9350 0.9340 – 0.9360 0.3630

Scaled Full Bootstrap 0.9360 0.9360 0.9450 0.9450 –

61



Stratum: 10.3%, Cluster: 0.2%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9530 0.9540 0.9460 0.9450 0.2770

Design-Based 0.9450 0.9450 0.9450 0.9390 0.2850

Partial Bootstrap 0.9440 0.9430 0.9420 0.9410 0.2900

Unscaled Full Bootstrap 0.9330 0.9320 – 0.9300 0.2900

Scaled Full Bootstrap 0.9370 0.9400 0.9360 0.9310 –

Coverage of 95% confidence interval for NIE

Stratum: 5.3%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.5450 0.5450 0.5470 0.5630 0.0000

Design-Based 0.5310 0.5290 0.5340 0.5460 0.0000

Partial Bootstrap 0.5330 0.5310 0.5370 0.5540 0.0000

Unscaled Full Bootstrap 0.7990 0.7990 – 0.8040 0.0000

Scaled Full Bootstrap 0.9230 0.9240 0.9360 0.9210 –

Stratum: 2.0%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.5300 0.5260 0.5130 0.5520 0.0000

Design-Based 0.5130 0.5140 0.5050 0.5390 0.0000

Partial Bootstrap 0.5160 0.5150 0.5040 0.5410 0.0000

Unscaled Full Bootstrap 0.8190 0.8190 – 0.8180 0.0000

Scaled Full Bootstrap 0.9430 0.9430 0.9330 0.9390 –
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Stratum: 0.2%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.5090 0.5090 0.5120 0.5180 0.0000

Design-Based 0.5060 0.5030 0.5050 0.5250 0.0000

Partial Bootstrap 0.5060 0.5070 0.5040 0.5230 0.0000

Unscaled Full Bootstrap 0.8030 0.8000 – 0.7930 0.0000

Scaled Full Bootstrap 0.9340 0.9340 0.9420 0.9410 –

Stratum: 10.3%, Cluster: 5.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.5330 0.5360 0.5370 0.5590 0.0000

Design-Based 0.5300 0.5310 0.5380 0.5540 0.0000

Partial Bootstrap 0.5280 0.5290 0.5460 0.5480 0.0000

Unscaled Full Bootstrap 0.7950 0.7940 – 0.7930 0.0000

Scaled Full Bootstrap 0.9340 0.9350 0.9320 0.9330 –

Stratum: 10.3%, Cluster: 2.0%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.5280 0.5250 0.5440 0.5510 0.0000

Design-Based 0.5260 0.5280 0.5250 0.5500 0.0000

Partial Bootstrap 0.5220 0.5240 0.5270 0.5470 0.0000

Unscaled Full Bootstrap 0.8140 0.8160 – 0.8180 0.0000

Scaled Full Bootstrap 0.9530 0.9530 0.9530 0.9460 –
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Stratum: 10.3%, Cluster: 0.2%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.5550 0.5530 0.5440 0.5810 0.0000

Design-Based 0.5400 0.5420 0.5320 0.5650 0.0000

Partial Bootstrap 0.5420 0.5430 0.5360 0.5670 0.0000

Unscaled Full Bootstrap 0.8380 0.8390 – 0.8210 0.0000

Scaled Full Bootstrap 0.9450 0.9440 0.9410 0.9370 –
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F Simulation: Common Exposure, Rare Outcome

(Binary Mediator)

We repeated the simulations described in Section 2.3 for a binary mediator with a

common exposure (50% prevalence) and a rare outcome (10% prevalence). The

percentage bias and the relative MSE and presented in Figures 7 and 8, respectively,

and coverage rates are presented in the subsequent tables.
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Figure 7. Percentage bias from the simulations with a binary mediator, a common binary

exposure (50% prevalence), and a rare outcome (10% prevalence). We considered six

di↵erent settings (by varying the proportion of the total variance attributed to di↵erences

between strata and clusters), and we implemented all methods outlined in section 2.2.

Percentage bias was defined as 1
1,000

P1,000
i=1

⇣
✓̂
i

�✓
✓

⌘
, where ✓ is the parameter of interest in

the finite population.
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Figure 8. Relative MSE from the simulations with a binary mediator, a common binary

exposure (50% prevalence), and a rare outcome (10% prevalence). We considered six

di↵erent settings (by varying the proportion of the total variance attributed to di↵erences

between strata and clusters), and we implemented all methods outlined in section 2.2.

Relative MSE was defined as 1
1,000

P1,000
i=1

⇣
✓̂
i

�✓
✓

⌘2
, where ✓ is the parameter of interest in

the finite population.
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Coverage of 95% confidence interval for NDE

Stratum: 5.3%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9440 0.9440 0.9430 0.9410

Design-Based 0.9350 0.9340 0.9320 0.9330

Partial Bootstrap 0.9410 0.9390 0.9350 0.9350

Full Bootstrap 0.9400 0.9390 0.9360 0.9340

Stratum: 2.0%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9540 0.9560 0.9520 0.9530

Design-Based 0.9500 0.9490 0.9480 0.9480

Partial Bootstrap 0.9480 0.9500 0.9530 0.9510

Full Bootstrap 0.9450 0.9460 0.9510 0.9480

Stratum: 0.2%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9530 0.9510 0.9560 0.9550

Design-Based 0.9460 0.9450 0.9500 0.9500

Partial Bootstrap 0.9500 0.9500 0.9540 0.9540

Full Bootstrap 0.9490 0.9480 0.9530 0.9520
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Stratum: 10.3%, Cluster: 5.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9510 0.9510 0.9540 0.9530

Design-Based 0.9410 0.9410 0.9480 0.9480

Partial Bootstrap 0.9430 0.9430 0.9510 0.9500

Full Bootstrap 0.9430 0.9440 0.9490 0.9490

Stratum: 10.3%, Cluster: 2.0%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9540 0.9540 0.9610 0.9620

Design-Based 0.9390 0.9410 0.9490 0.9490

Partial Bootstrap 0.9420 0.9440 0.9470 0.9470

Full Bootstrap 0.9400 0.9420 0.9460 0.9450

Stratum: 10.3%, Cluster: 0.2%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9620 0.9630 0.9610 0.9600

Design-Based 0.9560 0.9550 0.9580 0.9590

Partial Bootstrap 0.9570 0.9570 0.9620 0.9640

Full Bootstrap 0.9550 0.9520 0.9580 0.9630
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Coverage of 95% confidence interval for NIE

Stratum: 5.3%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.8800 0.8800 0.8710 0.8880

Design-Based 0.8870 0.8850 0.8700 0.8840

Partial Bootstrap 0.8850 0.8860 0.8690 0.8830

Full Bootstrap 0.9400 0.9400 0.9250 0.9330

Stratum: 2.0%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.8930 0.8920 0.8900 0.8970

Design-Based 0.8830 0.8810 0.8830 0.8920

Partial Bootstrap 0.8870 0.8870 0.8840 0.8920

Full Bootstrap 0.9350 0.9350 0.9380 0.9410

Stratum: 0.2%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9090 0.9080 0.8970 0.9070

Design-Based 0.9010 0.8970 0.8860 0.8960

Partial Bootstrap 0.9020 0.9040 0.8880 0.9030

Full Bootstrap 0.9560 0.9550 0.9420 0.9520
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Stratum: 10.3%, Cluster: 5.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.8840 0.8820 0.8780 0.8970

Design-Based 0.8800 0.8790 0.8820 0.8890

Partial Bootstrap 0.8750 0.8770 0.8840 0.8920

Full Bootstrap 0.9330 0.9330 0.9350 0.9360

Stratum: 10.3%, Cluster: 2.0%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.9020 0.9000 0.9090 0.9170

Design-Based 0.8940 0.8940 0.9060 0.9100

Partial Bootstrap 0.8950 0.8950 0.9060 0.9100

Full Bootstrap 0.9480 0.9460 0.9440 0.9500

Stratum: 10.3%, Cluster: 0.2%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Robust Model-Based 0.8830 0.8790 0.8810 0.8900

Design-Based 0.8720 0.8750 0.8720 0.8730

Partial Bootstrap 0.8690 0.8730 0.8770 0.8750

Full Bootstrap 0.9400 0.9350 0.9400 0.9440
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G Simulation: Common Exposure, Rare Outcome

(Continuous Mediator)

We repeated the simulations described in Section 2.3 for a continuous mediator with a

common exposure (50% prevalence) and a rare outcome (10% prevalence). The

percentage bias and the relative MSE and presented in Figures 9 and 10, respectively,

and coverage rates are presented in the subsequent tables.
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Figure 9. Percentage bias from the simulations with a continuous mediator, a common

binary exposure (50% prevalence), and a rare outcome (10% prevalence). We consid-

ered six di↵erent settings (by varying the proportion of the total variance attributed to

di↵erences between strata and clusters), and we implemented all methods outlined in

section 2.2. Percentage bias was defined as 1
1,000

P1,000
i=1

⇣
✓̂
i

�✓
✓

⌘
, where ✓ is the parameter

of interest in the finite population.
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Figure 10. Relative MSE from the simulations with a continuous mediator, a common

binary exposure (50% prevalence), and a rare outcome (10% prevalence). We considered

six di↵erent settings (by varying the proportion of the total variance attributed to di↵er-

ences between strata and clusters), and we implemented all methods outlined in section

2.2. Relative MSE was defined as 1
1,000

P1,000
i=1

⇣
✓̂
i

�✓
✓

⌘2
, where ✓ is the parameter of interest

in the finite population.
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Coverage of 95% confidence interval for NDE

Stratum: 5.3%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9570 0.9570 0.9610 0.9620 0.5170

Design-Based 0.9520 0.9550 0.9540 0.9520 0.5140

Partial Bootstrap 0.9530 0.9530 0.9530 0.9570 0.5200

Unscaled Full Bootstrap 0.9470 0.9480 – 0.9470 0.5200

Scaled Full Bootstrap 0.9500 0.9500 0.9530 0.9530 –

Stratum: 2.0%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9520 0.9520 0.9530 0.9570 0.5260

Design-Based 0.9380 0.9400 0.9380 0.9420 0.5020

Partial Bootstrap 0.9400 0.9380 0.9420 0.9470 0.5130

Unscaled Full Bootstrap 0.9340 0.9340 – 0.9350 0.5130

Scaled Full Bootstrap 0.9380 0.9390 0.9450 0.9410 –

Stratum: 0.2%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9370 0.9390 0.9340 0.9380 0.5000

Design-Based 0.9300 0.9330 0.9260 0.9310 0.4920

Partial Bootstrap 0.9400 0.9420 0.9340 0.9360 0.5040

Unscaled Full Bootstrap 0.9320 0.9340 – 0.9300 0.5040

Scaled Full Bootstrap 0.9370 0.9380 0.9350 0.9350 –
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Stratum: 10.3%, Cluster: 5.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9560 0.9540 0.9520 0.9510 0.4970

Design-Based 0.9450 0.9460 0.9430 0.9440 0.4930

Partial Bootstrap 0.9490 0.9490 0.9510 0.9470 0.5070

Unscaled Full Bootstrap 0.9420 0.9440 – 0.9390 0.5070

Scaled Full Bootstrap 0.9470 0.9470 0.9440 0.9450 –

Stratum: 10.3%, Cluster: 2.0%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9460 0.9460 0.9450 0.9430 0.5230

Design-Based 0.9320 0.9320 0.9380 0.9380 0.5260

Partial Bootstrap 0.9380 0.9370 0.9410 0.9410 0.5340

Unscaled Full Bootstrap 0.9290 0.9300 – 0.9310 0.5330

Scaled Full Bootstrap 0.9350 0.9330 0.9360 0.9390 –

Stratum: 10.3%, Cluster: 0.2%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9390 0.9390 0.9430 0.9400 0.4890

Design-Based 0.9330 0.9350 0.9360 0.9330 0.4940

Partial Bootstrap 0.9370 0.9380 0.9380 0.9360 0.5070

Unscaled Full Bootstrap 0.9290 0.9310 – 0.9330 0.5070

Scaled Full Bootstrap 0.9330 0.9340 0.9370 0.9370 –
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Coverage of 95% confidence interval for NIE

Stratum: 5.3%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.8910 0.8900 0.9030 0.9060 0.0000

Design-Based 0.8790 0.8790 0.8910 0.8940 0.0000

Partial Bootstrap 0.8810 0.8790 0.8950 0.8930 0.0000

Unscaled Full Bootstrap 0.7980 0.7950 – 0.7960 0.0000

Scaled Full Bootstrap 0.9330 0.9340 0.9400 0.9360 –

Stratum: 2.0%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.8980 0.8970 0.9040 0.9080 0.0000

Design-Based 0.8900 0.8870 0.8910 0.8980 0.0000

Partial Bootstrap 0.8930 0.8910 0.8920 0.8990 0.0000

Unscaled Full Bootstrap 0.7980 0.7980 – 0.7880 0.0000

Scaled Full Bootstrap 0.9390 0.9360 0.9360 0.9370 –

Stratum: 0.2%, Cluster: 10.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9010 0.9020 0.9010 0.8990 0.0000

Design-Based 0.9020 0.9010 0.8940 0.8970 0.0000

Partial Bootstrap 0.9020 0.9040 0.8970 0.9050 0.0000

Unscaled Full Bootstrap 0.8020 0.8010 – 0.8020 0.0000

Scaled Full Bootstrap 0.9380 0.9380 0.9360 0.9330 –
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Stratum: 10.3%, Cluster: 5.3%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9250 0.9230 0.9130 0.9250 0.0000

Design-Based 0.9080 0.9070 0.9050 0.9120 0.0000

Partial Bootstrap 0.9070 0.9100 0.9030 0.9130 0.0000

Unscaled Full Bootstrap 0.8160 0.8150 – 0.8020 0.0000

Scaled Full Bootstrap 0.9580 0.9570 0.9510 0.9490 –

Stratum: 10.3%, Cluster: 2.0%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.9110 0.9100 0.9080 0.9130 0.0000

Design-Based 0.8970 0.8930 0.9030 0.9060 0.0000

Partial Bootstrap 0.8970 0.8930 0.9090 0.9080 0.0000

Unscaled Full Bootstrap 0.7960 0.7950 – 0.8060 0.0000

Scaled Full Bootstrap 0.9410 0.9430 0.9440 0.9440 –

Stratum: 10.3%, Cluster: 0.2%

Variance Estimate Unweighted Covariate
Scaled

Weighted
Hybrid

Unscaled

Weighted

Robust Model-Based 0.8850 0.8870 0.8940 0.8970 0.0000

Design-Based 0.8780 0.8800 0.8880 0.8910 0.0000

Partial Bootstrap 0.8790 0.8780 0.8920 0.8910 0.0000

Unscaled Full Bootstrap 0.7810 0.7880 – 0.7950 0.0000

Scaled Full Bootstrap 0.9280 0.9280 0.9350 0.9360 –
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H Variance of Regression Coe�cients

In this appendix, we consider the variance of regression coe�cients in both linear and

logistic models.

Linear Model

Consider the following linear model, where X is binary and Y is continuous and

normally distributed:

E[Y |X] = �0 + �1X. (40)

The maximum likelihood estimate of �1 can be found by maximizing the log-likelihood

function, as shown in equations 41 and 42.
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We can substitute �̂0 from equation 41 into �̂1 from equation 42 to get

�̂1 =
P

n

i=1(xi

�x̄)(y
i

�ȳ)P
n

i=1(xi

�x̄)2 (Rice, 2007). The variance of �̂1 is equal to

V ar(�̂1) = V ar
⇣P

n

i=1(xi

�x̄)(y
i

�ȳ)P
n

i=1(xi

�x̄)2

⌘
. Since yi = �0 + �1xi and ȳ = �0 + �1x̄, the variance

of �̂1 can be re-written as V ar(�̂1) = V ar
⇣P

n

i=1(xi

�x̄)(�1x
i

��1x̄+✏)P
n
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, which can be further

reduced to V ar(�̂1) = V ar
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�1 +
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�x̄)P
n
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. Finally, since V ar(X + c) = V ar(X) and

V ar(kX) = k2V ar(X), the variance of �̂1 is equal to V ar(�̂1) =
�2

P
n

i=1(xi

�x̄)2 .
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Let X be a binary variable with probability of success p, i.e. X ⇠ Bin(n, p). Then the

term
Pn

i=1(x� x̄)2 is maximized when p = 0.5. Thus, the variance of X is minimized

when p = 0.5.

Logistic Model

Consider the following logistic model, where X and Y are both binary:

log

✓
P (Y = 1)

1� P (Y = 1)

◆
= �0 + �1X (43)

The large-sample variances of �̂0 and �̂1 are given by the terms along the main diagonal

of the variance-covariance matrix. To obtain these terms, we first need to solve the

information matrix. To do so, let Y1 ⇠ Bin(m1, ⇡1) and Y2 ⇠ Bin(m2, ⇡2) be two

independent random variables. Then the information matrix can be found by

maximizing the log-likelihood function, i.e.

I(�) = �


@2l(�)

@�i�1@�j�1

�

i,j
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2

4
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3

5. (44)

Next, the variance-covariance matrix can be found by inverting the information matrix,

i.e.

[I(�)]�1 =
1

m1⇡1(1� ⇡1)m2⇡2(1� ⇡2)

2

4 m1⇡1(1� ⇡1) �m1⇡1(1� ⇡1)
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3

5. (45)

Finally, the asymptotic variance for �̂1 is equal to the second entry along the main

diagonal of the information matrix, i.e. V ar(�̂1) =
m1⇡1(1�⇡1)+m2⇡2(1�⇡2)
m1⇡1(1�⇡1)m2⇡2(1�⇡2)

, which can be

further simplified to V ar(�̂1) =
1

E[Y1]
+ 1

E[m1�Y1]
+ 1

E[Y2]
+ 1

E[m2�Y2]
.

Recall that Y1 and Y2 are two independent binomial random variables. Consider the

function f(x) = 1
x
+ 1

n�x
. The derivative of f(x) is equal to f 0(x) = �1

x2 + 1
(n�x)2 . Since

f 0(x = 0.5n) and f 00(x = 0.5n) > 0, then x = 0.5n is a minimum of f(x). Thus, V ar(�̂1)

is minimized when Y1 = 0.5m1 and Y2 = 0.5m2, which occurs when ⇡1 = 0.5 and

⇡2 = 0.5.
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