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Abstract 
 

Physical activity level is a key exposure that is studied in a wide range of health fields. 

Measurement of physical activity can be a challenge as traditional self-report measures are 

subject to social desirability bias and recall error. Accelerometers have gained popularity as an 

objective measurement tool with the ability to provide more accurate and detailed measurements 

of physical activity level that avoid exposure bias. However, compliance with accelerometer 

wear is often imperfect, and the removal of accelerometers throughout the day leads to gaps in 

the data collection sequence. These gaps in data collection result in a need to modify subsequent 

analyses, as commonly employed analyses often rely on strong, implausible assumptions that 

may introduce bias.  

 

Multiple imputation is a powerful, flexible statistical tool that can be used in a wide variety of 

settings with missing data. This technique can be applied to fill in missing accelerometer counts 

during periods of non-wear for more accurate physical activity level estimation. However, the 

nature of accelerometer data provides unique challenges for imputation. In particular, imputation 

methods should account for zero-inflation, autocorrelation, multilevel structure, and high 

dimensionality present in accelerometer data.  

 

This investigation involved exploration of the theoretical and empirical properties of two zero-

inflated Poisson imputation models, and a zero-inflated Poisson Log-normal imputation model, 

that were designed to address the unique challenges inherent in imputing accelerometer data. 

Mean imputation surprisingly outperformed all three imputation models in terms of imputation 

accuracy with the Active Play Study data, indicating that none of the models should be employed 

with the goal of obtaining accurate estimates of true physical activity patterns. However, the 

imputation models performed well in the estimation of amount of daily average time spent in 

moderate-to-vigorous intensity physical activity in the sample, which is a useful result for 

investigators who only wish to obtain summary measures of physical activity level.  
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1 Introduction 

1.1 Background and motivating problem 

An active lifestyle allows children and youth to not only improve their health, but also improve 

their self-confidence, mood, and achievement as a student (CSEP, 2012). As part of an active 

lifestyle, daily moderate-to-vigorous intensity physical activity (MVPA) has been consistently 

shown to provide important health benefits (Poitras et al., 2016). Moderate-intensity activities 

allow individuals to burn roughly three to six times more energy per minute than sedentary 

behavior, whereas vigorous-intensity activities allow individuals to burn greater than six times 

more energy per minute than sedentary behavior (Harvard T.H. Chan School of Public Health, 

2016).  The Canadian Society for Exercise Physiology (CSEP) recommends that children and 

youth accumulate at least 60 minutes of MVPA each day (CSEP, 2012). 

 

Accurate physical activity (PA) measurement is necessary to evaluate current PA levels in 

populations, identify any changes in PA levels over time, and assess the effectiveness of 

interventions designed to increase PA levels (Prince et al., 2008). Although Canadian childhood 

obesity has increased sharply since the 1980s, corresponding with the downfall of active play 

(Janssen, 2013, 2014), self-reported data indicates that the majority of Canadian children and 

youth are sufficiently active (Colley et al., 2011). Traditional self-report measures of PA, such as 

through questionnaires like the PAQ-C (Kowalski, Crocker, & Donen, 2004), have been 

commonly used due to their low cost and low participant burden (Prince et al., 2008). 

Unfortunately, the practicality of these measures is overshadowed by their subjectivity to social 

desirability bias and recall error (Dale W Esliger & Tremblay, 2007; LeBlanc & Janssen, 2010; 
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Prince et al., 2008). These issues create a need for more objective PA measurement tools that 

possess greater validity. 

 

Presently, accelerometers are considered the gold standard for free-living PA measurement 

(Borghese et al., 2016; Esliger & Tremblay, 2007). Accelerometers can capture sporadic bouts of 

activity often performed by children and youth during active play time, which may be difficult to 

quantify with a questionnaire (LeBlanc & Janssen, 2010). They can also provide valuable insight 

into an individual’s pattern of activity throughout the day, including sleep, sedentary behavior, 

and intensity or duration of any PA performed (Esliger & Tremblay, 2007). From accelerometer 

data, important population health indicators can be derived such as daily average time spent in 

MVPA (LeBlanc & Janssen, 2010), or other PA summary measures of interest.  

 

Despite these advantages, accelerometers lose their accurate measurement ability when they are 

not consistently worn. In children and youth, the most common reasons for accelerometer 

removal are for watersports, if the device is not waterproof, or organized and contact sports 

where wearing the device is not permitted (D.W. Esliger, Copeland, Barnes, & Tremblay, 2005). 

The removal of accelerometers throughout the day leads to gaps in the data collection sequence, 

and if this problem not handled strategically, PA measurements will likely be inaccurate. 

 

The Canadian Health Measures Survey (CHMS) collects important health data on a nationally 

representative sample of the population, including accelerometer data that makes it possible to 

assess the proportion of Canadian children and youth that are meeting the CSEP PA guidelines 

(Colley et al., 2011; Statistics Canada, 2014). Based on the Cycle 3 CHMS from 2013, only 9% 
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of Canadian children and youth were meeting the CSEP guidelines (Statistics Canada, 2015). If 

children and youth are removing their accelerometers for important reasons that create 

systematic differences between wear time and non-wear time, such as for organized sport, PA 

measurements arising from traditional methods of analysis will be biased. Remedying any 

identifiable issues in the way accelerometer data is being analyzed in practice may reduce the 

amount of bias introduced into accelerometer-based PA measurement. These improvements 

could reveal that a higher or lower proportion of Canadian children and youth are meeting the 

CSEP PA recommendations than originally estimated, which would have important implications 

for Canadian public health policy and program development. 

1.2 Accelerometer data 

Accelerometers are small devices, worn either on the wrist or the hip, that have the ability to 

track PA by a count value measured over a pre-specified epoch, such as every 15 seconds. They 

measure body movement in terms of acceleration, with greater accelerations producing greater 

counts, and count values are used to estimate PA intensity and duration. The activity counts over 

time are stored in the device, and the data can later be retrieved for analysis (Esliger et al., 2005). 

An example of accelerometer data from the Active Play Study conducted at Queen’s University 

is seen in Figure 1.1. 
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Figure 1.1: Example of data collected by an accelerometer over a single day (12:00am – 
12:00am). The x-axis represents the time of day and the y-axis represents the intensity of 
activity, measured in terms of count value. Each black bar represents the amount of movement 
done in a single epoch, and the more black bars grouped together, the longer the duration of 
activity. The two shaded areas in grey highlight extended periods of zero counts. 
 

1.3 Incomplete accelerometer data 

The two shaded grey areas in Figure 1.1 represent extended periods of zero counts. These 

extended periods of zero counts mean that no movement was recorded by the accelerometer. 

Unless additional information was collected from the wearer, such as through a log sheet, the 

analyst will not know definitively whether the accelerometer was in fact removed, or if the 

wearer was simply sedentary during this period. Usually a cutoff of 20, 30, or 60 minutes of 

consecutive zeros is chosen to indicate a period of device removal; if the period of zeros is 

longer than this cutoff, it is unlikely that the wearer had remained perfectly still for this long. In 

Figure 1.1 the cutoff was set at 60 minutes. It was thus assumed that the accelerometer was 

removed for two periods during the day displayed in Figure 1.1, and there was likely some level 

of activity that was not recorded. These extended periods of zero counts are referred to as 

missing data intervals or non-wear time (Catellier et al., 2005; J. A. Lee & Gill, 2016; P. H. Lee, 

2013).  
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In the past, a common approach to handling missing accelerometer data was to simply average 

over missing intervals during analysis, excluding non-wear periods from both the numerator and 

denominator. However, this approach can lead to a number of issues. It creates an underlying 

assumption that the wear time and non-wear time are not systematically different, which is often 

false and can lead to an overestimation or underestimation of PA level. Additionally, some 

analysis methods apply data reduction techniques that drop individuals or days without sufficient 

wear time to obtain more reliable estimates of habitual PA. Sufficient wear time can be described 

as an individual having at least a certain number of valid wearing days during the period the 

accelerometer was worn (e.g. at least 3 days). A valid wearing day can be considered a day 

where the accelerometer was worn for at least a certain number of hours (e.g. a 10 hour 

minimum of wearing time out of 24 hours) (Alhassan, Sirard, Spencer, Varady, & Robinson, 

2008; Mâsse et al., 2005; Penpraze et al., 2006). However, dropping individuals or days from 

analysis may similarly introduce bias if these individuals or days without sufficient wear time are 

systematically different from those with sufficient wear time. Finally, data reduction techniques 

result in a smaller sample size, a loss of information, and a decrease in study power. 

 

Instead of dropping individuals or days, or averaging over missing intervals, we can try and fill 

in non-wear intervals with plausible count values. We do this by making use of information we 

have from the observed data, such as demographic information, time of day during the non-wear 

period, or average activity level. We can create a statistical model based on the observed data, 

and draw plausible values from the posterior predictive distribution of this model to fill in the 

missing values. This process is called imputation, and it can reduce the amount of bias arising in 

the analysis of accelerometer-based PA measures. 
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1.4 Report structure 

The remainder of this report is structured as follows. Section 2 gives a general overview of the 

concept of missing data and common statistical methods for handling this issue, both 

theoretically and in the context of accelerometer data. Section 3 focuses on multiple imputation 

for accelerometer data in more detail, including the challenges, a review of previously proposed 

methods, and the shortcomings of these methods that need to be addressed and improved upon. 

The prediction performance of three multiple imputation methods is assessed through an 

application to the Active Play Study data in Section 4. Finally, in Section 5, the observed 

properties of multiple imputation methods are examined using a pseudosimulated data set based 

on the Active Play Study data. Overall conclusions and future directions are discussed in Section 

6. 

2 Missing Data Overview 

In statistical analyses, interest often lies in making inferences on an unknown parameter, or set of 

unknown parameters, !, based on the distribution of a set of complete data, !!"#, sampled from 

a population. The process for making inferences on ! is complicated when some parts of !!"# 

are missing (Schafer & Graham, 2002), as standard statistical methods are often developed for 

use with complete, rectangular data sets (Little & Rubin, 2002). 

 

Let !!"# denote a matrix with n rows and p columns, where n is the number of individuals in the 

data set and p is the number of outcome variables. In practice, some entries in !!"# could be 

missing, so !!"# can further be broken down into observed values, !!"#, and missing values, 

!!"## (i.e. !!"# = (!!"#,!!"##)). Let the n x p matrix ! be a matrix of missing data indicators, 
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where if an entry in !!"# is observed, the corresponding entry in ! takes on a 1, and if an entry 

!!"# is missing, the corresponding entry in R takes on a 0. Additionally, we let ! be an n x q 

matrix of completely observed covariates, and we suppose that interest lies in making inferences 

on ! based on the observed data.  

 

The possible values of ! given the observed data are summarized by the posterior distribution 

! ! !!"# = ! ! ! !!"#,!!"## ! !!"## !!"# !!!"##, where ! ! !!"#,!!"##  is the posterior 

distribution of ! given the hypothetical complete data, and ! !!"## !!"#  is the posterior 

distribution of the missing data given the observed data (van Buuren, 2012). This posterior 

distribution effectively averages over the distribution of the missing data (Schafer & Olsen, 

1998). 

2.1 Missing data mechanisms 

The work done by Rubin (1976) helped develop three classifications of missing data 

mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing 

not at random (MNAR). These three classifications help describe the relationship between the 

missingness and the variables in the data set (Little & Rubin, 2002).  

 

MCAR is the strictest classification. It states that the probability of a value being missing does 

not depend on any other covariates, including both those observed in the data set and those not 

observed the data set. In equation form, this assumption can be written as 

! ! !!"#,!!"##,!,! = !! ! ! , where ψ is a set of parameters from the missingness model 

(Little & Rubin, 2002).  

 



! 8!

The MAR classification relaxes the MCAR requirements. Here, missingness is permitted to 

depend upon any of the observed covariates in the data set; however, it cannot additionally 

depend upon any covariates not observed the data set. The equation form of the MAR 

assumption can be written as ! ! !!"#,!!"##,!,! = !!(!|!!"#,!,!) (Little & Rubin, 2002). 

This assumption is the minimum requirement for many of the statistical methods that handle 

missing data in order to achieve unbiased and efficient estimates of the parameters of interest 

(Schafer & Graham, 2002). Previous studies have shown that it is often a plausible assumption to 

make, and departures from the MAR mechanism may only have minimal impact on estimates 

and standard errors (Collins, Schafer, & Kam, 2001).  

 

If the missing data mechanism is not MCAR or MAR, it is MNAR. This missingness mechanism 

is the most difficult to work with as the missingness depends on some unobserved covariates. 

One does not have information about these covariates to help explain the missingness in the data, 

and so the missingness can only be partly explained by the observed data. The distribution of 

missingness is simply written as !(!|!!"#,!!"##,!,!), and cannot be simplified any further. A 

joint probability model can be defined for both the observed data and the missingness indicator, 

!, to yield valid inferences. This joint probability model can be written as !(!!"#,!|!,!) !=

! !(!!"#,!!"##|!)!!(!|!!"#,!!"##,!)!!!!"##, and the inferences for ! now depend on the model 

for !, !(!|!!"#,!!"##,!) (Schafer & Graham, 2002). Inferences may vary greatly depending on 

the choice of the ! model, and choosing the right model usually requires detailed knowledge 

about the data under study (Allison, 2002).  
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Unfortunately, there are no objective tests to identify under which mechanism the missingness in 

a data set has arisen, and so it is rare to assume the mechanism with confidence. The MAR 

assumption cannot be verified as one does not have any information about the unobserved 

covariates on which the missingness may depend (Little & Rubin, 2002). For this reason, 

potential violations of the MAR assumption should always be considered, and the impact of 

departures from the MAR mechanism on results should be investigated through sensitivity 

analyses (Allison, 2002; Schafer & Graham, 2002). 

2.2 Complete-case analysis 

In complete-case analysis, also known as listwise deletion, individuals are removed from the 

sample if they have any missing data on any of the variables in the data set. This yields a 

“completely observed” sample to which the usual statistical analyses can be applied.  

 

This method effectively assumes that the individuals with complete data are representative of the 

population, which is often false. Additionally, not making use of the partially observed 

information from individuals with incomplete data renders this method inefficient. This is 

especially problematic in the case of data sets with many variables, any of which may contain 

missing values (Little & Rubin, 2002; Schafer & Graham, 2002). 

 

Approaches to handling missing data that do not discard available information are usually more 

desirable. Two methods for parameter estimation with incomplete data are considered further – 

likelihood-based methods and imputation methods. 
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2.3 Maximum likelihood 

Maximum likelihood estimates the parameters of interest directly from the observed data 

(Enders, Mistler, & Keller, 2016). An underlying model is specified based on the observed data, 

and the likelihood of the parameters of interest is maximized based on the corresponding 

likelihood function (Allison, 2002). 

 

The likelihood function of the complete data for the parameters of interest can be written as 

!(!|!!"#,!!"##). In the presence of missing data, the full likelihood given the observed data, 

(!!"#,!), is obtained by integrating the complete data likelihood over all possible values of the 

missing data. Assuming that the two sets of parameters are independent, the full likelihood can 

be written as !(!,!|!!"#,!) != ! ! ! !!"#,!!!"" ! ! !!"#,!!"##,! !!!"##. Inferences for ! 

must be based on the full likelihood when the data are MNAR. However, if the data are MAR, 

inferences for ! can be based on the partial likelihood function that ignores the missing data 

mechanism ! ! !!"# ∝ ! ! ! !!"#,!!"## !!!"##. This is because under the MAR assumption 

! ! !!"#,!!"##,R = !L ! !!"#,R , and so this term can be move out of the integral (Little & 

Rubin, 2002). The observed data likelihood effectively averages over the distribution of the 

missing data, and the ML estimate of ! is the value of ! for which the likelihood function is the 

greatest (van Buuren, 2011).  

2.4 Imputation 

Imputation is the process of filling in missing data with plausible values based on the 

information provided by the observed data (Little & Rubin, 2002). There are two general types 

of imputation: single imputation and multiple imputation. 
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2.4.1 Single imputation 

Single imputation produces a single plausible completed data set, filling in each missing data 

value with an educated guess based on information available from the observed data. Methods of 

single imputation include mean imputation, conditional mean imputation, conditional 

distribution imputation, and unconditional distribution imputation. These methods can only be 

considered ad hoc solutions to missing data problems, and must be used carefully as they have 

the potential to distort variable distributions and inter-variable relationships (Schafer & Graham, 

2002). One critical shortcoming is that they all fail to reflect the added variability stemming from 

the uncertainty surrounding the values being imputed (Little & Rubin, 2002). This leads to an 

underestimation of the total variance, making parameter estimates falsely appear more efficient, 

p-values artificially low, and rates of Type I error higher than nominal levels (Schafer & Olsen, 

1998). This issue can be addressed by expanding to multiple imputation. 

2.4.2  Multiple imputation 

Multiple imputation (MI), developed by Rubin (1987), is the gold standard of imputation 

methods and arises from a Bayesian perspective. Missing values and unknown parameters are 

treated as random, and all of the data’s evidence about the missing values and parameters of 

interest is summarized using probability distributions (Little & Rubin, 2002).  

 

The likelihood function of the parameters given the observed data can be multiplied by a prior 

distribution, !(!), which gives the updated posterior distribution of the parameters, ! ! !!"# ∝

!(!)! ! !!"#  (Little & Rubin, 2002). There are several choices of prior distribution that can be 

made. One can choose to incorporate informative priors if some additional external knowledge 

about the parameters of interest exists, or non-informative priors if there is no additional 
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knowledge (Schafer & Graham, 2002). One common method of estimating the posterior 

distribution using non-informative priors involves obtaining ML estimates of the parameters of 

interest from the observed data, and assuming the parameters follow a normal posterior 

distribution with mean and variance defined by the ML estimates (Schafer & Olsen, 1999). 

Whatever the choice of prior distribution, its influence in the overall posterior distribution 

diminishes as the sample size increases. As MI relies on large-sample approximations for the 

complete data distribution, the choice of prior distribution rarely has a significant impact on 

results (Schafer & Graham, 2002). 

 

MI creates m ≥ 2 versions of the complete, filled-in data set with various sets of plausible values 

based on repeated random draws from the predictive distribution of an imputation model. This is 

the posterior predictive distribution of the missing values under a particular specified model for 

missingness, !(!!"##|!!"#,!), given the observed data. The parameters ! are drawn from the 

posterior distribution calculated from the observed data, !(!|!!"#). Then, standard complete-

data analysis methods can be run on each imputed data set, and the results combined by Rubin’s 

rules (D. B. Rubin, 1987) to obtain overall parameter inferences (Little & Rubin, 2002).  

 

MI methods can be further broken down into several approaches. Our focus is on explicit 

imputation, rather than implicit imputation where imputed values are borrowed from the 

observed values of other similar individuals. 
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Joint modeling 

Joint modelling (JM) is a parametric imputation approach. It assumes that the incomplete 

variables follow a common multivariate distribution (Enders et al., 2016), and leads to 

imputation procedures whose statistical properties are known under a correctly specified joint 

imputation model (van Buuren, 2007). However, it can be difficult to define a single joint model 

for non-normal data sets (Yucel, 2008), data sets with mixed data types, or for high-dimensional 

data sets with many variables (R. He, 2012). In any of these situations, an alternative imputation 

approach often must be considered. 

 

Fully conditional specification 

Fully conditional specification (FCS), also known as multiple imputation by chained equations 

(MICE) or sequential imputation, is a popular imputation method for handling multivariate 

missing data as it does not require that a joint model be defined (Liao et al., 2014; van Buuren, 

2007). FCS factorizes the joint distribution of the data as a sequence of unique conditional 

imputation models for each incomplete variable, and draws missing values to impute in an 

iterative fashion. These univariate imputation models can be of any form, and tailored to the 

distribution of the incomplete variables (Liao et al., 2014; van Buuren, 2007). FCS does not 

require the user to specify a covariance structure among the variables, and it has a lower sample 

size requirement than the JM approach (Lloyd, Obradović, Carpiano, & Motti-Stefanidi, 2013). 

This method is particularly useful when no suitable identifiable joint distribution of the 

incomplete variables exists (van Buuren, 2012), when there are many incomplete variables 

(Kalaycioglu, Copas, King, & Omar, 2016), when incomplete data is of mixed types (R. He, 

2012), or when it is necessary to preserve unique features in the data and maintain constraints 
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between different variables (van Buuren, 2007). FCS imputation is often the only way to conduct 

MI with unconventional, non-normal data sets (Yucel, 2008), and simulation studies have shown 

that FCS generally yields unbiased estimates that have appropriate coverage (van Buuren, 2007). 

 

In general, imputation performance is affected by four factors: the number of covariates included 

in the imputation model(s), the covariate correlations with the incomplete variable(s), the amount 

of missingness in the data, and the missing data mechanism at work (Catellier et al., 2005). 

When applying MI methods, all relevant available information should be included to the fullest 

extent possible, as this helps to reduce any systematic differences between completely observed 

and partially observed individuals (R. He & Belin, 2014).  

 

MI is often considered more attractive than ML methods because ML methods are problem 

specific, whereas MI is more flexible and can be implemented similarly for a variety of analyses 

(Zhao & Yucel, 2009). Analysts who do not have the statistical expertise required for ML 

missing data methods can simply analyze the imputed, complete data sets with their usual 

complete-data analysis models and software (Y. He, Yucel, & Raghunathan, 2011). Additionally, 

if multiple people are to analyze the data, then the creation of an imputed data set prior to any 

analyses ensures comparability of results across analyses (Schafer & Graham, 2002). A final key 

feature of MI is that the imputation model does not necessarily have to be congenial with the 

analysis models to yield correct inferences (Y. He et al., 2011; Little & Rubin, 2002). 
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3 Multiple Imputation for Accelerometer Data 

3.1 Challenges 

There are three particular aspects of accelerometer data that make imputation challenging: zero-

inflation, high dimensionality, and a multilevel structure to the data. Typically with 

accelerometer data, it is desirable to avoid specifying the complex covariance structure of the 

data, and a multivariate JM strategy is not feasible. For this reason, it is best to focus on FCS 

methods that have a lower sample size requirement and bypass the need for specifying a single 

joint model.  

 

Further details on each of these three identified challenges are provided in the following 

subsections. 

3.2.1 Zero inflation 

Accelerometer data are zero inflated, where the activity count data contain more zero values than 

typically predicted with a standard count model, such as a Poisson model. Ignoring the zero-

inflated nature of a variable in the imputation process can severely distort the variable’s marginal 

distribution, or its relationship with other variables (Schafer & Olsen, 1999). Imputation methods 

tailored to zero-inflated count data have been shown to produce unbiased parameter estimates 

and measures of uncertainty compared to standard count data imputation methods (Kleinke & 

Reinecke, 2013). As we are interested in the distribution of activity counts for the accelerometer 

sample, it is natural to assume that the counts follow a Poisson distribution, including additional 

zeros from sedentary time. The process contributing to the zero inflation needs to be modeled 

separately, such as through a zero-inflated model like the zero-inflated Poisson (ZIP) model 
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(Lambert, 1992). This report will focus on ZIP models as they are simple to fit using R software 

and the pscl package, and readily available to apply as an imputation model using the mice 

package and its extensions.  

 

The ZIP model is a mixture of two data-generating processes – the zero-inflation process and the 

activity count process. Zero inflation occurs with probability !, and activity counts with 

probability 1− !, giving the probability distribution 

! ! = !|! = ! + 1− ! ! 0 ! !if!! = 0
!!!!!!!! 1− ! ! ! ! !if!! > 0 , where ! ! ! = !!!!!

!!  is the Poisson probability 

mass function. The zero inflation probability, !, can additionally be specified as a function of 

covariates ! !!! , where ! is a set of covariates to help explain the probability of zero 

inflation, and ! is a corresponding vector of regression coefficients. Common model choices for 

! !!!  are the logit and probit models, and the covariates ! can be different from the 

covariates that define the activity count process (Kleinke & Reinecke, 2013). 

3.2.2 High dimensionality 

Accelerometer data are also high-dimensional. Data sets typically consist of hundreds of 

individuals, each with thousands of PA measurements in addition to baseline and demographic 

covariates such as age and sex. The Active Play Study data, for example, consists of 332 

individuals, each with a set of measurements that were taken every 15 seconds during awake 

time for 7 days. Having information on a large number of variables may make the MAR 

assumption more plausible (R. He, 2012), but it creates a number of barriers for using JM 

imputation methods. Simpler traditional models, such as the multivariate normal (MVN) model 

with a general covariance matrix that allows each variable to be correlated with all other 
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variables, will usually be over-parameterized for the sample size (R. He, 2012). This is especially 

an issue in data sets with a large variable-to-individual ratio. Additionally, in large data sets 

variables are often of mixed data types (e.g. count, categorical, continuous), which increases the 

complexity of trying to model the joint distribution of all variables (Liao et al., 2014).  

 

Liao et al. (2014) compared seven different imputation methods in both simulated and real high-

dimensional phenomic data containing mixed data types. These included mean imputation, 

MICE, a random forest-based method (missForest in R), and various K-nearest neighbor 

imputation methods. In their simulation study, they found no method to universally outperform 

other methods, although mean imputation was consistently the worst method. They concluded 

that the choice between MICE, missForest and K-nearest neighbor method depends on the data 

types being imputed and the data structure. He and Belin (2014) proposed a MVN JM approach 

to handle high-dimensional incomplete data with both continuous and binary variables. Normal 

latent variables were introduced for binary variables so that MVN JM could be used to impute 

data, and results from their simulations indicated that this method could adapt to different 

MCAR and MAR missingness mechanisms, as well as various covariance structures. In He’s 

corresponding PhD dissertation (2012), he referenced a method developed by Dunson (2005), in 

which Poisson latent variables were used in a latent variable model for mixed count, binary, and 

ordinal data. He suggested that the Poisson latent variable model could be extended to include 

continuous and nominal variables as well. However, both He (2012), and He and Belin (2014), 

recognized that if a data set includes count or semicontinuous variables, incorporating these 

variables into a JM imputation method is challenging, and that an FCS imputation approach 

would likely still be required.  
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3.2.3 Multilevel structure and Autocorrelation 

Finally, accelerometer data have a multilevel structure, where days of activity measurements are 

nested within individuals. In addition to time-invariant effects, such as age, sex, and BMI, there 

are also time-varying effects, including day effects, hour effects, minute effects, and second 

effects. This multilevel structure must be considered when selecting an imputation method, as 

basic single-level imputation methods applied to multilevel data can introduce substantial bias 

and lead to underestimation of standard errors, even under the MAR assumption (Enders et al., 

2016; van Buuren, 2011). The imputation model should aim to preserve the correlations that 

arise from the multilevel structure (Yucel, 2008). In the context of accelerometer data 

imputation, failing to account for similar activity levels across days from the same individual 

will lead to underestimation of longitudinal correlations among activity counts, and may not 

properly recover an individual’s true pattern of physical activity during the period the 

accelerometer was worn (Allison, 2002). In addition to dependence across days, there is a time-

associated effect within days, where consecutive accelerometer measurements are expected to be 

correlated. This can additionally be thought of as a temporal or longitudinal effect within days, 

and if these within-day effects are ignored in the imputation model, efficiency is lost and bias 

may similarly be introduced (Junger & Ponce de Leon, 2015). As a result, additional structure 

needs to be incorporated into imputation models in order to yield more efficient and unbiased 

parameter estimates for accelerometer data.  

 

A general approach to accounting for dependence across days is to include a random effect for 

individual.  Much of the work on multilevel mixed-effects MI has focused on JM for continuous 

data with MVN assumptions (Schafer & Yucel, 2002; Yucel, 2008, 2011). Zhao and Yucel 
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(2009) branched off to explore FCS imputation for one continuous and one binary variable using 

generalized linear mixed-effects models in multilevel settings. Although the FCS approach was 

shown to perform well in the imputation of continuous variables, and it outperformed PAN (an R 

package for imputation using multivariate generalizations of linear mixed-effects models) in the 

imputation of binary variables, there were a number of convergence issues and poor parameter 

inference for the binary variable in the presence of higher intracluster correlation coefficients. 

Enders et al. (2016) recognized that to date there has been limited success in combining 

generalized linear mixed models with FCS.  

 

For within-day effects, Cano and Andreu (2010) showed that by incorporating appropriate data 

structure, such as through simple lag effects, MI could be applied successfully to time series data 

and yield plausible values. Kalaycioglu et al. (2016) found that when normally distributed 

repeated measures data displayed a first-order auto-regressive correlation structure between 

measurements, FCS imputation with a moving time window of lag and lead covariates performed 

well in terms of bias and efficiency.  

 

Methods to capture both across-days and within-day correlations simultaneously have been 

assessed by Nevalainen et al. (2009) and Welch et al. (2014). Nevalainen et al. proposed a 

doubly iterative FCS imputation approach, also called two-fold FCS, for repeated measures data 

with multiple variables that was computationally intensive, but yielded valid parameter 

inferences. This was achieved through univariate models for each variable at each time point that 

were iterated both “within-time” including one lag and one lead covariate, and “among-time”. 

Welch et al. applied the doubly iterative FCS approach in high-dimensional longitudinal settings 
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with larger proportions of missingness. It was shown that two-fold FCS still created unbiased 

and efficient parameter estimates in these settings, especially in the case of imputing time-

dependent covariates with greater longitudinal correlations.    

3.2 Previously proposed methods 

Two studies by Catellier et al. (2005) and Lee (2013) contributed key findings to the 

advancement of imputation for accelerometer data. Catellier et al. examined an EM algorithm 

and JM MI approach that both made use of information from valid days to help impute invalid 

days. They showed that these two imputation methods outperformed complete-case analysis in 

terms of bias and precision for the imputation of the mean and standard deviation of intensity-

weighted minutes of MVPA per day. Lee found that incorporating information from both valid 

and invalid days in a two-step MI approach further improved performance. Compared to 

methods that did not incorporate information available from invalid days, the two-step approach 

yielded unbiased estimates of average counts per minute with lower estimation error. 

 

However, the methods proposed by Catellier et al. and Lee used imputation to only obtain 

summary measures from incomplete accelerometer data, such as intensity-weighted minutes of 

MVPA per day or average counts per minute. Methods that only impute summary measures are 

simpler to execute because considerations do not have to be made for zero inflation, 

autocorrelation, or multilevel structure among activity counts across time. These types of 

imputations are not as useful when we are interested in results beyond summary measures, such 

as an individual’s pattern of PA throughout the day. This caveat created a need for methods of 

imputation that filled in the actual accelerometer counts over all epochs during non-wear time. 
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Lee and Gill (2016) defined a minute-level FCS imputation approach based on a mixture of zero-

inflated Poisson and Log-normal distributions that was inspired by the accelerometer data 

structure. Also called the ZIPLN model, this imputation model was shown to effectively handle 

the zero-inflated and autocorrelated nature of multivariate accelerometer count data (see the 

Appendix for additional detail on the ZIPLN model).  

 

Lee and Gill demonstrated the importance of including lag and lead variables in the imputation 

model for better performance. Through correlation heat maps, they displayed the autoregressive 

correlation structure present in the data, which confirmed the need for only a finite number of lag 

and lead effects to properly capture the longitudinal relationships among activity counts. By 

examining residual correlation heat maps, as well as through comparisons of a test statistic 

developed by Srivastava and Yanagihara (2010), Lee and Gill found that the ZIPLN model with 

3 lag and 3 leads effects was most effective in comparison to other ZIPLN models with different 

numbers of lags and leads, as well as two ZIP models and a zero-inflated Negative Binomial 

model that included some lags and leads. Lee and Gill additionally assessed prediction accuracy 

for wear time, and imputation accuracy for non-wear time through comparisons of root mean 

squared error and mean area difference. The ZIPLN model including both lags and leads 

outperformed all other models considered. 

 

Lee and Gill created the package accelmissing in R to help facilitate easier implementation of the 

ZIPLN imputation model for researchers with their own accelerometer data. Computational 

details for the ZIPLN imputation model are found in the Appendix. 
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3.3 Issues and extensions 

The Active Play accelerometer data set has observations from 7 days nested within individuals, 

which can be considered multilevel or longitudinal data. Failing to account for similarity in 

activity level across days from the same individual during imputation will lead to 

underestimation of longitudinal correlations across activity counts, and may not properly recover 

an individual’s true pattern of physical activity (Allison, 2002). Lee and Gill (2016) effectively 

treated all days independently, as if each day of daily activity counts in the data set came from a 

unique individual, which made the data appear as if it was seven times the true sample size. The 

lag and lead effects included in their models incorporated dependency among activity counts 

within days, but not dependency among activity counts across days from the same individual, 

likely leading to an underestimation of variance. There are a few ways to try and incorporate 

dependence across days from the same individual. One option is to include a random effect 

corresponding to individual in the imputation model. However, there are no easily implemented 

packages in R for imputation using zero-inflated Poisson mixed models that we could find, 

especially for FCS imputation. Another option is to use a two-fold, doubly iterative, FCS 

imputation method with lag and leads effects both within and across days, similar to the method 

proposed by Nevalainen et al. (2009). Given the size of our data set, the number of epochs, and 

the number of missing data scenarios we wanted to consider, this approach would have likely 

been highly computationally intensive and time consuming. We decided to stick with a singly 

iterative FCS method, and to instead try including a simple time-varying composite measure in 

the imputation model that incorporated some information about an individual’s unique activity 

habits across the 7 days. A summary measure of average activity level on weekdays and 

weekends, broken down into 4 time periods over the day, was chosen. This created 8 different 
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average activity levels for each individual, corresponding to average morning activity level 

(9:00am – 9:30am), average early afternoon activity level (9:31am – 2:59pm), average late 

afternoon activity level (3:00pm – 5:58pm), and average evening activity level (6:00pm – 

9:00pm), both on weekdays and weekends. The time intervals were chosen based on time-of-day 

cut points from the Active Play Study, and our choice to be consistent with Lee and Gill and only 

impute from 9:00am – 9:00pm. Time-varying covariates were not originally permitted in the 

imputation function from the accelmissing package, so we adjusted their function to allow for 

these covariates, as well as to allow for imputation every 15 seconds instead of every minute, and 

to include both lag and lead effects in the zero inflation portion of the model opposed to a single 

lag effect (see the Appendix for details on the ZIPLN imputation procedure developed by Lee 

and Gill). We also decided to focus on ZIP and ZIPLN models to account for the zero inflation in 

the data, as zero-inflated Negative Binomial models often require substantial sample size 

(Kleinke & Reinecke, 2013), and we ran into estimation problems when trying to fit them to our 

332!×!2880 data set. Finally, we sought to assess a more comprehensive set of imputation 

methods and missingness scenarios compared to what was shown by Lee and Gill. 

4 Data Application  

The Active Play study is an ongoing cross-sectional study that is being conducted at Dr. Ian 

Janssen’s Physical Activity Epidemiology Lab here at Queen’s University. The main purpose of 

the study is to assess and describe the characteristics of children’s active play. 444 children and 

youth (222 boys and 222 girls) aged 10-13 from Kingston were sampled, and each study 

participant wore an Actical accelerometer for 7 days to collect data on their physical activity 

with the goal of measuring active play. All study participants were instructed to wear the 
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accelerometer for 24 hours each day for the 7 days following their preliminary lab visit. Each 

participant additionally filled out a computer-based questionnaire, had physical measurements 

taken, and was given a log sheet to record supplementary information on their daily activity such 

as wakeup time, bedtime, and any additional periods of accelerometer removal. Parents of 

participants also completed a computer-based questionnaire. Table 4.1 provides a summary of 

the variables from the Active Play Study. Some of the data collected from this study was used to 

evaluate the performance of three imputation models on a real accelerometer data set. In this 

report we focused on five variables: activity count, sex, age, race, and BMI. 
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Table 4.1: Summary of the variables from the Active Play Study data (N=332 with 7 days of 
data per individual). Bolded variables were considered in this report. 
 
Variable Mean (SD) or n (%) 

Activity count (awake wear time)  83.27 (249.40) 
Sex 

 

Male 167 (50.3%) 
Female 165 (49.7%) 

Age  11.85 (1.16) 

Race 

 

White 283 (85.2%) 
Other 49 (14.8%) 

BMI z-score  0.017 (1.00) 
SBP z-score  0.012 (1.00) 

Health 

 

No health condition 301 (90.7%) 
Health condition 31 (9.3%) 

Family status 

 

Double parent 277 (83.4%) 
Single parent 55 (16.6%) 

Parent education 

 

High school education or less 29 (8.7%) 
2-year college diploma 100 (30.1%) 

4-year college diploma or 

university degree 

203 (61.1%) 

Fast food 

 

Rarely or never 113 (34.0%) 
1-2 times per month 169 (50.9%) 
1+ times per week 50 (15.1%) 

Weekly snacking frequency  4.23 (3.92) 

Maturity  186.06 (30.30) 
Annual family income 

 

No answer 49 (14.8%) 
< $50,000 60 (18.1%) 

$50,000 - $100,000 84 (25.3%) 
> $100,000 139 (41.9%) 

Season Winter 121 (36.4%) 

Spring 83 (25.0%) 

Summer 52 (15.7%) 
Fall 76 (22.9%) 
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As is typical of accelerometer data, there were a number of periods of non-wear time in the 

study. Non-wear time was identified as periods of zero counts longer than 60 minutes (240 

epochs), and any periods of accelerometer removal recorded by participants in their log sheets. 

Table 4.2 provides a breakdown of the proportion of missingness during awake time by day of 

the week, as well as the overall proportion of missingness in the entire data set (daily awake time 

was specified in participant log sheets). Table 4.3 gives the missing rate across different levels of 

the four variables considered. 

 

Table 4.2: Missing rate by day (awake time). 
 

Day of the week Missing rate (%) 
Sunday 8.94 
Monday 7.30 
Tuesday 6.41 

Wednesday 6.14 
Thursday 5.86 

Friday 8.30 
Saturday 9.43 
Overall 7.48 (SD = 0.014) 

 

 

Table 4.3: Missing rate by variable (awake time). 
 

Variable  Missing rate (%) 
Sex Male 7.80 

Female 7.14 
Age [10, 11) 5.54 

 [11, 12) 7.26 
 [12, 13) 7.12 
 [13, 14] 10.72 

Race White 6.79 
Other 11.50 

BMI z-score < 0 6.82 
> 0 8.48 
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The proportion of missingness was similar across days, with an average of 7.48% and a standard 

deviation of 0.014%. The missing rate among males and females was similar, with a slightly 

higher missing rate among males. Non-wear also tended to be greater among those individuals 

who were older, of non-white race, and of higher than average BMI. 

 

It is interesting to explore the relationship between non-wear and time of day. Figure 4.1 displays 

the proportion of individuals who were wearing their accelerometer between 12:00am – 12:00am 

across all days, as well as for weekends only, and weekdays only. The wearing proportion in the 

sample always remained high (above 85%). 

 

 

Figure 4.1: Proportion of individuals who were wearing their accelerometer over time (12:00am 
– 12:00am) across all days (black), and stratified by weekdays (green) and weekend (pink).   



! 28!

Next, the level of autocorrelation in the observed data was examined. The autocorrelation can be 

conceptualized in two ways: the correlation between activity counts from epochs close in time 

within days, and the correlation between activity counts across days. Figure 4.2 displays 

correlation heat maps corresponding to these two conceptualizations at specific times.  

 

 

Figure 4.2: Correlation heat maps of activity counts within days from 9:00am – 10:00am across 
all individuals (left plot), and of activity counts across days at 12:00pm across all individuals 
(right plot). 
 

The plot on the left of Figure 4.2 displays the correlations across epochs from 9:00am – 10:00am 

within days. The diagonal blue line represented the perfect correlation of an epoch with itself. 

There was a clear banding correlation structure on either side of the diagonal, suggesting that the 

strongest correlations were between the epochs close together in time (shades of blue, white, and 

light pink in the graph), and that correlations weakened between epochs as they became further 

apart in time (darker shades of pink). This was indicative of an autoregressive correlation 

structure, and was similarly shown by Lee and Gill (2016). 
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The plot on the right of Figure 4.2 displays the correlations across days at a single epoch, 

12:00pm (noon). Again, the diagonal blue squares represented the perfect correlation of activity 

counts on a single day at 12:00pm with itself. The off-diagonal squares represented the strength 

of activity count correlations across days, with shades of lighter pink indicating stronger 

correlations, and shades of darker pink indicating weaker correlations. By the lighter shaded 4×4 

square in the center of the plot, it appeared that Tuesday – Friday had the strongest activity count 

correlations, suggesting that activity levels during weekdays were more similar. Monday also 

notably had moderate correlations with Tuesday, Friday, Saturday, and Sunday, and weekdays 

tended to be only weakly correlated with weekends. 

 

Next, ZIP and ZIPLN models using sex, age, race, BMI z-score, and a weekend/weekday 

indicator were fit to the data to assess model fit and prediction accuracy. The ZIP model was 

considered both with and without the time-varying (T-V) average activity level covariate, and ! 

= 1, 2, 3, 4, 5, 10, and 20 lag and lead effects were added to the zero-inflation and activity count 

portions of each model. We additionally included two types of mean imputation for comparison 

– imputation using the overall mean activity count from wear time (the grand mean method), and 

imputation using epoch-specific mean activity counts from wear time (the epoch mean method). 

Model fit was assessed in two ways based on residual correlation – graphically and using a test 

statistic. Prediction accuracy was assessed based on wear time, as the true activity counts during 

non-wear time were unknown.  
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Figure 4.3: Correlation heat maps of model residuals within days from 9:00am – 10:00am. 
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If the model fits the data well, one would expect any autocorrelation to be removed from the 

model residuals, and the correlation matrix to resemble an identity matrix (J. A. Lee & Gill, 

2016). Figure 4.3 displays the residual correlation heat maps within days from 9:00am – 

10:00am. ! = 1, 5, 10, and 20 lags and leads for the ZIP model without the T-V covariate, the 

ZIP model with the T-V covariate, and the ZIPLN model are shown. Visually, there is no clear 

banding correlation structure in any of the plots, and all models seemed to have effectively 

removed most of the autocorrelation from the residuals. There may have been some block-

diagonal positive correlation structure in the ZIP model with ! = 1, and weak overall 

correlations in the ZIPLN model with ! = 1, but these correlations seemed to disappear as more 

lag and lead effects were added. Residual correlation could be evaluated further with a simple 

test statistic tailored to high-dimensional data. Schott (2005) proposed a test for the complete 

independence of a high-dimensional sample correlation matrix. Assuming that the model 

residuals were asymptotically normal, we could apply this test to determine if they were 

independent, which is equivalent to the correlation matrix being diagonal. Following the notation 

of Schott (2005) if !!" is the (!, !)!ℎ element of the correlation matrix, the null hypothesis can be 

written as !!:!!!" = 0!(! > !). The statistic for this test under the null hypothesis with mean 0 is 

given by !!" = ! !!"!!!!
!!!

!
!!! − !(!!!)

!! , with variance equal to 

!!!"! = !"# !!" = !!(!!!)(!!!)!!(!!!) . The value !!" is the (!, !)!ℎ element of the sample correlation 

matrix, ! is the sample size !!– !1, and ! is the number of epochs being considered. In the 

Active Play Study, looking at the correlations within days from 9:00am – 9:00pm, !! =

!332(7) !− 1! = !2323 and !! = !2880!(the number of 15 second epochs from 9:00am – 

9:00pm). Across days, !! = !332!− 1! = !331 and !! = !2880 7 = !20160. If the complete-
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independence hypothesis holds, then the z-score !!"!!!"
 will have mean 0 and variance 1. Table 4.4 

gives the test results and associated p-values for all the models considered under the two 

conceptualizations of correlation. 

 
Table 4.4: Test to assess the complete independence of the PA count residuals resulting from the 
different modeling procedures. The null hypothesis is zero correlation in all entries of the 
residual correlation matrix off the diagonal. A smaller test statistic indicates that the complete-
independence hypothesis holds, meaning that the model more effectively removes the 
autocorrelation from the residuals. The smallest test statistic of each model considered is bolded. 
 

  
9:00am – 9:00pm 

Within days 
9:00am – 9:00pm  

Across days 
Model ! z-score p-value z-score p-value 

Grand mean – 27892.180 < 0.001 1215510 < 0.001 
Epoch mean – 27892.180 < 0.001 1215510 < 0.001 

 
 

ZIP 
 
 

1 2141.259 < 0.001 4847.299 < 0.001 
2 1957.836 < 0.001 4781.673 < 0.001 
3 1857.861 < 0.001 4738.793 < 0.001 
4 1805.728 < 0.001 4714.434 < 0.001 
5 1770.050 < 0.001 4693.206 < 0.001 

 10 1650.318 < 0.001 4618.344 < 0.001 
 20 1466.208 < 0.001 4471.558 < 0.001 

 1 1820.483 < 0.001 4667.431 < 0.001 
 2 1701.057 < 0.001 4624.222 < 0.001 

ZIP 3 1636.284 < 0.001 4593.284 < 0.001 
+ T-V covariate  4 1601.203 < 0.001 4574.797 < 0.001 

 5 1576.382 < 0.001 4556.944 < 0.001 
 10 1486.963 < 0.001 4494.266 < 0.001 
 20 1341.843 < 0.001 4367.147 < 0.001 

ZIPLN 

1 1964.185 < 0.001 4643.918 < 0.001 
2 1940.152 < 0.001 4608.705 < 0.001 
3 2008.378 < 0.001 4608.992 < 0.001 
4 2071.747 < 0.001 4615.309 < 0.001 
5 2117.021 < 0.001 4624.866 < 0.001 

 10 2256.939 < 0.001 4708.269 < 0.001 
 20 2291.218 < 0.001 4856.871 < 0.001 

 

Although the p-values were all very small, which indicated that the null hypothesis !!:!!!" =

0!did not hold, we were more interested in comparing the test statistics relatively to assess which 
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model leads to the least amount of remaining residual correlation. As expected due to poor fit to 

the true data, both mean imputation methods had very large test statistic values compared to 

those from the ZIP and ZIPLN models, indicating that neither method effectively reduced the 

amount of autocorrelation among the residuals. For the ZIP models considered, the test statistic 

results indicated that adding more lag and leads effects to the model corresponded to a smaller 

amount of remaining residual correlation. This makes sense intuitively, as incorporating more 

information about the longitudinal correlations among activity counts within days would be 

expected to yield more accurate predictions of the true activity level at each epoch, and therefore 

reduce the amount of autocorrelation among the residuals. Surprisingly, the ZIPLN model did 

not display the same relationship of smaller test statistics with more lags and leads. For both 

conceptualizations of correlation, the ZIPLN model with ! = 2 lags and leads yielded the 

smallest test statistic. Lee and Gill similarly found a point at which additional lags and leads did 

not help in removing autocorrelation from the residuals, however, their results indicated that the 

ZIPLN model with ! = 3 lags and leads was optimal. Within days, the ZIP+T-V covariate model 

produced the smallest test statistic values for a given number of lags and leads, and this was 

believed to be attributable to the incorporation of extra information about activity level habits 

across days. Across days, the ZIPLN model had the smallest test statistic values out of all three 

models for ! = 1 and 2 lags and leads, although they were similar to those from the ZIP+T-V 

covariate model. With ! = 3 or more lags and leads, the ZIP+T-V covariate model again 

produced the smallest test statistic values. 

 

Next we assessed the prediction accuracy for wear time. This was done based on the idea that if a 

model predicts well for wear time, then it should also predict well for non-wear time under the 
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MAR assumption (J. A. Lee & Gill, 2016). The prediction accuracy was assessed using root 

mean squared error (RMSE) and mean area difference (MAD). RMSE was calculated as 

!"#$! = ! (!!"!!!!")!
! !!∈!!∈!

!
!, where !!" was the true activity count for all epochs ! classified 

as wear time, !!" was the corresponding predicted activity count from each model, T was the 

number of wear time epochs, and N was the number of days from all individuals. MAD was 

calculated as !"#! = ! !!(!)!!!!(!)
! !!∈!!∈! , where !!(!) was the predicted value from a B-

spline fit to the true data for all epochs ! classified as wear time, and !!(!) was the 

corresponding predicted value from a B-spline fit to the predicted data from each model. Table 

4.5 gives the RMSEs and MADs calculated for wear time for each model considered. Smaller 

values of both measures indicated better prediction accuracy. 
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Table 4.5: Comparison of prediction accuracy for wear time. A smaller RMSE and MAD 
indicate better prediction accuracy. The smallest RMSE/MAD of each model considered is 
bolded. 
 

Model ! RMSE MAD 
Grand mean – 260.4249 105.7426 
Epoch mean – 259.5225 104.1045 

 
 

ZIP 
 
 

1 164.1544 21.35827 
2 163.1579 21.11089 
3 161.9195 21.20378 
4 161.1037 21.26250 
5 160.3945 21.27973 

 10 157.2554 21.08272 
 20 151.2810 20.33611 
 1 162.3844 20.88467 

 2 161.5267 20.63484 
ZIP 3 160.4230 20.69978 

+ T-V covariate  4 159.6658 20.73526 
 5 158.9924 20.73831 
 10 155.9378 20.51768 
 20 150.0567 19.79549 

ZIPLN 

1 163.3765 27.05473 
2 166.7019 30.84502 
3 168.5127 33.32196 
4 169.6644 34.64452 
5 170.4528 35.50286 

 10 172.5439 37.40369 
 20 174.0313 38.00704 

 

Results in Table 4.5 were similar to those seen in Table 4.4. Again, prediction accuracy was poor 

for the two mean imputation methods. For both ZIP models, including more lag and leads effects 

produced smaller RMSEs and MADs, indicating better prediction accuracy. The ZIP+T-V 

covariate model also produced the smallest values of RMSE and MAD out of all three models 

for a given number of lags and leads. Reasons for these results are expected to be similar to those 

hypothesized for the Table 4.4 results. Out of the ZIPLN models considered, the model with ! = 

1 lag and lead had the smallest RMSE and MAD, and this result was congenial with what was 

seen from Lee and Gill.  
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Figure 4.4 displays the Wednesday activity counts from 9:00am – 9:00pm for individual 5 in the 

Active Play Study. Three prediction curves with numbers of lags and leads that produced the 

smallest RMSE and MAD for the ZIP and ZIPLN model are shown. The prediction curve from 

the grand mean and a curve fit to the true data were also included for comparison.
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Figure 4.4: Activity count plot from 9:00am – 9:00pm on Wednesday for individual 5. Overlaid splines correspond to the true activity 
counts, the grand mean predicted activity counts, and the predicted activity counts from the ZIP and ZIPLN models with lags and 
leads that produced the smallest RMSE and MAD from Table 4.5. 
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The prediction curves for the ZIP and ZIP+T-V covariate models overlapped with the true count 

curve for the majority of the epochs, however, there were some intervals where both models 

overestimated the activity count. This was notably seen between 6:00pm – 6:30pm. The ZIPLN 

model prediction curve also followed the true count curve reasonably well, but tended to be 

lower than the two ZIP model curves and occasionally underestimated peaks of activity counts. 

These underestimations and overestimations were similarly seen across all individuals and days 

in the data set. 

5 Observed Properties of Multiple Imputation Methods 

A pseudosimulated complete data set was created in order to assess the imputation accuracy for 

non-wear time of the three models considered. The goal of this analysis was to compare how 

well the different models recovered the activity counts during non-wear time, and if they lead to 

accurate estimation of overall daily average time spent in MVPA (a common indicator used to 

assess population health (Statistics Canada, 2014)). As previously mentioned, imputation 

performance is affected by four factors: the number of covariates included in the imputation 

model(s), the covariate correlations with the incomplete variable(s), the amount of missingness 

in the data, and the missing data mechanism at work (Catellier et al., 2005). Holding the first two 

factors constant, we compared the imputation performance of our models under six missing data 

scenarios corresponding to combinations of the three missing data mechanisms (MCAR, MAR 

and MNAR) and two proportions of non-wear time in the data (10% and 20%).  

 

As it would be very challenging to accurately capture variable relationships in simulating high-

dimensional accelerometer data from scratch, we instead made use of the completely observed 
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days from the individuals in the Active Play Study. To create a pseudosimulated complete data 

set, we subsetted the Active Play Study data to completely observed days from individuals who 

had at least one completely observed weekday and one completely observed weekend day. After 

subsetting the data, we were left with a total of 803 days from 182 individuals, with varying 

numbers of days per individual, which constituted approximately 35% of the original sample. 

Table 5.1 displays the summaries of the variables considered for this reduced sample. Variable 

distributions were similar to those seen in the original Active Play Study sample (Table 4.1). 

 
Table 5.1: Summary of the variables from the complete data (N=182 with varying days per 
individual). 
 
Variable Mean (SD) or n (%) 

Sex 

 

Male 89 (48.9%) 
Female 93 (51.1%) 

Age  11.62 (1.09) 

Race 

 

White 160 (87.9%) 
Other 22 (12.1%) 

BMI z-score  -0.016 (0.89) 

 

In order to create pseudosimulated incomplete data sets with missingness similar to that observed 

in the Active Play Study, we selected the lengths of the simulated non-wear periods based on 

random draws from the lengths of the non-wear periods that arose in the Active Play Study. The 

placement of the non-wear periods in time was selected using random draws from a Binomial 

distribution. If a 1 was drawn at a particular epoch, this indicated the start of a non-wear period, 

and subsequent epochs were also set as missing for the associated randomly drawn non-wear 

period length. Under the MCAR assumption, Binomial probabilities were set to yield 

approximately 10% and 20% missingness. Under the MAR assumption, Binomial probabilities 
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were modeled using logistic regressions with covariates sex, age, BMI z-score dichotomized at 0, 

and a weekend/weekday indicator. Regression parameters were selected to reflect the 

missingness trends in the real data. From Tables 4.2 and 4.3, males, older individuals, individuals 

with an above average BMI, and weekends tended to have more missingness. Based on these 

observations, parameters were set as !! = −0.25, !! = 0.1, !! = 0.5, !! = 0.5, and !! was 

varied to yield approximately 10% and 20% missingness.  Under the MNAR assumption, an 

indicator covariate for activity count exceeding 375 was additionally included in the logistic 

regression, as this was the MVPA cutoff used in the Active Play Study. We wanted to make it so 

that greater activity counts were associated with a higher probability of missingness, so !! = 1. 

Even though individuals of non-white race also tended to have more missingness in the original 

sample, race was not included in the logistic regression models as the pseudosimulated complete 

data set only contained 22 individuals of non-white race. Because of this small representation, 

we ran into issues trying to fit the imputation models when individuals of non-white race were 

set to have a higher probability of missingness. These issues occurred when there were not 

enough individuals of non-white race without missingness to inform the models at each time 

point. 

 

Using the pseudosimulated complete data, imputation accuracy could be assessed for non-wear 

time. ! = 1 and ! = 2 lags and leads were of interest from the results seen in Tables 4.4 and 4.5, 

and for the sake of computational time, ! = 5 was selected to show the effects of adding more 

lags and leads. Similar to Table 4.5, Table 5.2 gives the RMSEs and MADs calculated for non-

wear time from each model considered. ! = 5 imputed data sets were created per ZIP and 
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ZIPLN imputation, and RMSE and MAD were calculated for each imputed data set and averaged 

to yield final measures. Smaller values of both measures indicated better imputation accuracy. 

 
Table 5.2: Comparison of imputation accuracy for non-wear time. A smaller RMSE and MAD 
indicated better imputation accuracy. The smallest RMSE/MAD of each model considered is 
bolded. 
 

 10% non-wear 20% non-wear 
Missing data mechanism Model ! RMSE MAD RMSE MAD 

MCAR 

Grand mean – 195.3844 100.6665 205.3645 103.8683 
Epoch mean – 186.6050 99.51552 197.4076 102.3259 

 
ZIP 

 

1 222.4692 113.8935 231.9786 119.5379 
2 222.4536 114.3544 233.7072 117.2954 

5 219.6213 113.0595 231.0787 115.8108 

ZIP  
+ T-V covariate 

1 217.5453 109.9382 229.0052 113.1865 
2 217.7598 110.6880 229.2803 113.5857 

5 216.3616 109.7137 227.8501 112.7657 

ZIPLN 
1 213.2742 101.6670 224.4635 104.9852 

2 209.9684 100.3232 221.5449 103.8871 
5 204.7788 97.7128 217.1748 101.5615 

MAR 

Grand mean – 210.2115 106.0366 207.1119 106.5767 
Epoch mean – 202.8043 104.0816 199.1993 104.7210 

ZIP 
1 233.7599 121.4655 233.3182 122.8718 
2 233.7598 122.3791 232.8965 122.7449 

5 230.6686 120.3285 230.6200 121.4650 

ZIP 
+ T-V covariate 

1 228.1848 117.4008 228.0959 118.4106 
2 228.3489 118.3094 228.5449 119.2088 
5 226.9460 117.1736 227.3393 118.4228 

ZIPLN 
1 224.2858 108.1475 223.6355 109.6924 

2 220.8827 106.6043 220.7249 108.5830 
5 215.5849 103.9496 216.4299 106.4039 

MNAR 

Grand mean – 210.2532 107.6144 214.5714 107.7390 
Epoch mean – 202.3379 105.5409 207.4516 105.9753 

ZIP 
1 238.1671 123.9644 239.7490 119.5595 

2 238.1594 124.5626 239.4154 119.9372 
5 235.3630 122.7930 237.3780 118.8039 

ZIP 
+ T-V covariate 

1 233.4081 120.1388 235.0584 116.1131 
2 233.9562 120.9621 235.7049 116.8597 

5 232.4803 120.3882 234.7905 116.2046 

ZIPLN 
1 229.4246 111.2659 230.5101 108.5054 
2 226.4174 110.1162 227.6755 107.3741 

5 221.5479 107.5819 223.8308 105.5891 
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Across all missingness scenarios considered, mean imputation surprisingly outperformed all ZIP 

and ZIPLN imputation models in terms of both RMSE and MAD. This was expected to be 

indicative of an issue with the ZIP and ZIPLN models’ ability to recover true activity patterns in 

the data. Focusing on the ZIP and ZIPLN models, under the MCAR and MAR mechanisms, 

adding more lags and leads lead to better imputation accuracy. For the ZIP+T-V covariate model, 

more lags and leads lead to improved imputation accuracy under the MCAR mechanism and 

MAR mechanism with 10% missingness. However, the RMSE and MAD did not agree on the 

best model under the MAR mechanism with 20% missingness, although the differences in these 

measures across the different numbers of lags and leads could be considered negligible. Under 

the MNAR mechanism, adding more lags and leads improved imputation accuracy for the ZIP 

and ZIPLN models. The RMSE and MAD for the ZIP+T-V covariate model did not agree on the 

best number of lags and leads, although again, the differences in RMSE and MAD across the 

different numbers of lags and leads for either amount of missingness could be considered 

negligible. Overall, the ZIPLN model had the smallest RMSE and MAD for a given number of 

lags and leads in each missingness scenario compared to the two ZIP models, indicating the best 

imputation accuracy. This contrasted the results in Table 4.5 for prediction accuracy where the 

ZIP+T-V covariate model was shown to produce the smallest RMSE and MAD. The ZIP model 

always had the largest RMSE and MAD in all missingness scenarios, indicating that it had the 

worst imputation accuracy out of all the methods considered. 

 

Finally, we wanted to assess how well the methods recovered a common summary measure of 

PA level, namely daily average time spent in MVPA. Daily average time spent in MVPA was 

calculated as the number of epochs in the data set (both wear time and non-wear time) with 
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activity counts exceeding 375, divided by the total number days. We additionally divided by 4 to 

give the measure in terms of minutes, instead of 15-second epochs. This measure was calculated 

for each of the ! = 5 imputed data sets from each ZIP and ZIPLN imputation, averaged, and 

compared with the amount of daily average time spent in MVPA calculated from the 

pseudosimulated complete data set. We additionally included daily average time spent in MVPA 

calculated from the wear time only under each missingness scenario, effectively ignoring the 

non-wear periods. This method was equivalent to the “averaging” approach discussed in Section 

1.3. Table 5.3 gives the results of these calculations, as well as the difference between the 

measure derived from the imputed data and the “true” measurement. A smaller amount of error 

indicated better estimation accuracy. 
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Table 5.3: Comparison of estimation accuracy for daily average time spent in MVPA. A smaller 
amount of error indicated better estimation accuracy. The smallest errors from each model 
considered, and the associated MVPA estimate, are bolded. 
 

“True” daily average time spent in MVPA = 59.2092 
 10% non-wear 20% non-wear 

Missing data mechanism Model ! MVPA Error MVPA Error 

MCAR 

Wear time – 59.4422 -0.2330 64.2104 -5.0012 
Grand mean – 53.1055 6.1037 47.4486 11.7606 
Epoch mean – 53.1055 6.1037 47.4486 11.7606 

 
ZIP 

 

1 60.1560 -0.9468 60.6768 -1.4676 
2 60.0184 -0.8092 59.9972 -0.7880 

5 59.4452 -0.2360 58.8366 0.3727 

ZIP  
+ T-V covariate 

1 59.7948 -0.5856 59.5928 -0.3836 
2 59.7176 -0.5084 59.3920 -0.1828 
5 59.1980 0.0112 58.4502 0.7590 

ZIPLN 
1 57.7120 1.4972 55.7173 3.4919 
2 57.2939 1.9153 54.9969 4.2123 
5 56.6164 2.5928 53.9079 5.3014 

MAR 

Wear time – 59.2498 -0.0406 60.9936 -1.7844 
Grand mean – 53.0688 6.1404 46.2983 12.9110 
Epoch mean – 53.0688 6.1404 46.2983 12.9110 

ZIP 
1 59.9956 -0.7864 60.4181 -1.2089 

2 59.8808 -0.6715 60.0648 -0.8555 
5 59.2316 -0.0224 58.8820 0.3272 

ZIP 
+ T-V covariate 

1 59.6031 -0.3938 59.6140 -0.4047 
2 59.5146 -0.3054 59.4517 -0.2425 
5 59.0100 0.1993 58.4894 0.7198 

ZIPLN 
1 57.6096 1.5996 55.3929 3.8163 
2 57.1809 2.0283 54.6846 4.5246 

5 56.54732 2.6619 53.60772 5.6015 

MNAR 

Wear time – 69.6227 -10.4135 67.3561 -8.1469 
Grand mean – 52.7404 6.4689 46.0943 13.1149 
Epoch mean – 52.7404 6.4689 46.0943 13.1149 

ZIP 
1 59.74689 -0.5377 58.49377 0.7154 
2 59.59215 -0.3829 58.21575 0.9935 
5 58.98443 0.2248 57.17341 2.0358 

ZIP 
+ T-V covariate 

1 59.39601 -0.1868 57.90193 1.3073 
2 59.29981 -0.0906 57.78051 1.4287 
5 58.83655 0.3727 56.88107 2.3281 

ZIPLN 
1 57.27709 1.9321 54.17933 5.0299 
2 56.8929 2.3163 53.45268 5.7565 

5 56.23506 2.9742 52.43524 6.774 
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Mixed results were seen for which models most accurately estimated daily average time spent in 

MVPA. Mean imputation consistently performed poorly, producing large underestimations. This 

was to be expected as both mean imputation methods imputed values below the 375 MVPA 

cutoff for all non-wear epochs, which greatly decreased the amount of MVPA seen in the data. 

This was especially the case under the MNAR mechanism. The wear-time-only method had 

varying performance with good estimations produced under the MCAR and MAR mechanisms 

with 10% missingness. However, it did not do well under the MCAR and MNAR mechanisms 

with 20% missingness, and under the MNAR mechanism with 10% missingness it produced a 

poorer estimate than those from the mean imputation methods. From the ZIP and ZIPLN models, 

under the MCAR mechanism the ZIP and ZIP+T-V covariate models produced close results, 

with the ZIP+T-V model often leading to slightly more accurate estimation. The ZIPLN model 

under the MCAR mechanism produced noticeably worse estimates than the two ZIP models that 

underestimated the amount of daily average time spent in MVPA, especially when the amount of 

missingness was doubled, and adding more lags and leads did not improve the estimation 

accuracy. This was likely due to the ZIPLN model’s tendency to underestimate peaks in activity 

level, as seen in Figure 4.4. Similar results were seen for the MAR and MNAR mechanisms with 

10% missingness, and doubling the amount of missingness often lead to worse estimation 

accuracy for all three models. Additionally, under the MNAR mechanism with 20% missingness, 

the ZIP model surprisingly produced the smallest estimation errors even though it had the worst 

imputation accuracy from Table 5.2. The inconsistencies in results seen between Tables 5.2 and 

5.3 indicated that imputation accuracy, measured in terms of RMSE and MAD, was not a good 

measure of ability to recover information about PA level summary statistics, such as daily 

average time spent in MVPA. 
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Figure 5.1 displays the Tuesday activity counts from 9:00am – 9:00pm for individual 3 in the 

Active Play Study. Three curves fit to the imputed data with numbers of lags and leads that 

produced the smallest RMSE and MAD for each ZIP and ZIPLN model under the MNAR 

mechanism with 20% missingness are shown. A curve fit to the grand mean imputed data under 

the MNAR mechanism with 20% missingness and a curve fit to the true data were also included 

for comparison. 
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Figure 5.1: Activity count plot from 9:00am – 9:00pm on Tuesday for individual 3. Red bars at the top mark the periods of non-wear 
time. Overlaid splines correspond to the true activity counts, the imputed activity counts from the ZIP and ZIPLN models with lags 
and leads that produced the smallest RMSE and MAD from Table 5.2 under the MNAR mechanism with 20% missingness, and the 
grand mean imputed activity counts under the MNAR mechanism with 20% missingness.
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The curves from the ZIP and ZIPLN models only poorly tracked the true count curve during non-

wear time. There were many discrepancies between the peaks in the imputed data and the peaks 

in the true data, indicating that none of the ZIP or ZIPLN models were able to accurately recover 

the true pattern of activity, especially for longer periods of non-wear. These models may perform 

adequately in data sets with intermittent, shorter periods of non-wear, but this would be an 

unrealistic pattern of missingness in real-life accelerometer data. The grand mean imputation 

curve remained at approximately 88 count during non-wear time, which was also inaccurate. 

However, with a consistent imputed value of 88 during the non-wear periods, it better 

approximated the smaller activity counts in the true data (which were more frequent than large 

activity counts) and lead to smaller overall discrepancies between the mean imputation curve and 

the true data curve. These observations helped explain the results seen in Table 5.2 where mean 

imputation had the best overall imputation accuracy in terms of RMSE and MAD. 

6 Conclusions 

This report provided a useful contribution to research for the imputation of accelerometer data by 

considering a more comprehensive set of imputation methods and a wider range of missingness 

scenarios than previously investigated by other studies. Namely, the accelerometer data 

imputation methods considered were assessed for imputation accuracy under MCAR, MAR and 

MNAR missingness mechanisms with two levels of missingness, and time-varying covariates 

were considered to better account for individual activity habits over time. Additionally, this 

report provided a comparison of how well the imputation methods recovered a common 

population measure of PA level. 
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Overall, with the Active Play Study data, simple mean imputation more accurately imputed the 

values for non-wear time compared to the ZIP and ZIPLN models considered. This is an 

important result if interest lies in recovering an individual’s true pattern of physical activity 

during the period the accelerometer was worn, as previously proposed imputation models from 

the literature were shown to perform poorly at this task. We therefore do not recommend any of 

the imputation methods considered here for this purpose. However, the ZIP and ZIPLN models 

had better performance recovering the amount of daily average time spent in MPVA for the 

sample compared to the mean imputation methods. Results indicated that the two ZIP models 

best served this purpose, as the ZIPLN model lead to substantial underestimations, likely due to 

its issues with underestimation of peaks in activity levels in the data. From these observations, 

we conclude that the goal of the accelerometer data analysis should guide the choice of which 

imputation method to employ. 

 

Future research directions for the imputation of accelerometer data would include exploration of 

the use of mixed-effects FCS imputation models to account for dependency across days within 

individuals, and exploration of imputation outside of the 9:00am – 9:00pm time period that may 

require additional consideration for sleeping habits. Furthermore, in our study, both time-varying 

and time-independent covariates were completely observed, and so future work could explore 

more complex imputation in the situation where both activity count variables and model 

covariates could be missing. 

 
 

 

 



! 50!

Appendix 
 
 

Following the notation of Lee and Gill (2016), the ZIPLN model is of dimension !! = !2! + 1, 

and is a mixture of ! independent Poisson models and a !-variate Log-normal model. It assumes 

that zero counts are observed with probability !!, and that the activity counts can be modeled by 

a Poisson(!!) distribution with probability 1− !!, where !! = !"#(!!!!!+ !!!), !!~!! 0,! , 

and ! denotes a !!!!! variance-covariance matrix. In other words, a Log-normal distribution is 

placed on the mean parameter of the Poisson portion of the ZIP distribution (i.e. 

!! !~!!"!(!!!!,!)).  

 

The conditional expectation of the ZIPLN random variable is written as  

!(!!,!|!!! , !!) != ! (1− ! !"#$%!!(!!!!!))!!"#(!!!!! !+ !!!"). The first term of the conditional 

expectation is a logistic regression !"#$!(!! !) != !!!!!!, where !! and ! are sets of covariates 

and regression coefficients, respectively, that help predict the probability of an activity count 

being from the zero inflation process, or from the Poisson Log-normal process. The covariates 

and regression coefficients !! and ! help describe the distribution of the activity counts that arise 

under the Poisson Log-normal model. The separation of the zero inflation portion and count 

portion of the ZIPLN model allows the analyst to separately specify which covariates cause zero 

inflation, and which cause activity.  

 

If ! = (!!!! ,… ,!!!!,!!!!,… ,!!!!)! represents a set of ! lag and lead variables of !!, where 

!! != !!"#(!!) !− !!!!!!, then !~!!!(0,!!!). The conditional expectation of the ZIPLN model 

that incorporates lag and leads effects can be updated as 
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! !!,! !! ,!! , !!) != ! 1− ! !"!"#!! !!!!! + !!!!,!!! !"# !!!!! !+ !!!"!!!!!! ,!which follows 

from the normal conditional distribution property. Additionally, !!,!!! = !"#(!!,!!! + !1), 

!!! != !!"#! !,! , and !!" != !!"#! !! ,! .  

 

Parametric Bayesian imputation with a ZIPLN imputation model is carried out in several steps. 

First, the entire data set is filled in using ZIP imputation with 1 lag and predictive mean matching 

(PMM). Imputed counts are drawn from the conditional expectation of the ZIP model, 

! !!,! !!,!!!,!! , !!) != ! (1− ! !"#$%!!(!!!!! + !!!!,!!!))!exp!(!!!!! !+ !!!!!,!!!) 

where !!,!!! = !!"#(!!,!!! !+ !1). ZIP model parameters, ! = (!, !,!,!), are estimated from the 

observed data, !!"#, using ML, and then it is assumed that the posterior distribution of the 

parameters is normal with mean and variance defined by the ML estimates. Draws from the 

posterior distribution to obtain updated parameter estimates are equivalent to ! = !! !+ !!!
!
!!, 

where ! = !"#(!) and !!~!!(0, 1). Imputations for the non-wear time, !!"##, are selected using 

PMM based on draws from the ZIP model defined by the updated zero-inflated probability 

!! = !"#$%!!(!!!!! + !!!!,!!!)), and mean parameter !! = exp!(!!!!! !+ !!!!!,!!!). Zero-

inflated imputations are drawn based on the zero-inflated probability, where !! = 0 if !! > !!!, 

!! !~!!"#$(0, 1). Count imputations are drawn from the Poisson model, where !! = !! if !! ≤ !!!. 

Then, PMM can be applied based on the smallest absolute differences between the draws from 

the ZIP model, !!, and the observed data, !!"#, which completes one iteration.  

 

Next, ZIPLN imputation with ! lags and leads is performed in a similar fashion for the 

remaining iterations. A set of lags for the zero-inflated portion of the model, 
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!!,!!! = !!"# !!,!!! !+ !1 , is calculated based on the completed data from the first iteration. A 

ZIP model is again fit to the completed data to obtain model parameters to inform the posterior 

distribution, and to calculate the K lags and leads, ! = (!!!! ,… ,!!!!,!!!!,… ,!!!!)!, needed 

to inform the Log-normal error term. Updated parameter draws are made using ! = !! !+ !!!
!
!!, 

where ! = (!, !,!), and the updated zero-inflated probability and mean parameter are calculated 

as !! = !"#$%!!(!!!!! + !!!!,!!!)) and !! = exp!(!!!!!). 

 

Again, zero-inflated imputations are drawn based on !! = !!(!! = 0), where !! = 0 if !! > !!!. 

Count imputations are now updated with the Log-normal error term considering ! lags and leads 

!! = !!!"#(!), where ! = !!!"!!!!!!!. This process is repeated for the remaining iterations to 

yield one complete, imputed data set. 
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