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Abstract

Missing data due to non-response is pervasive in large-scale survey research. Failing to

appropriately account for these missing values can lead to erroneous findings and false con-

clusions. Multiple Imputation (MI) has become a highly recommended approach to handling

non-response in surveys since it is flexible, easy to implement, and can e↵ectively regain e�-

ciency and reduce bias. Features of complex surveys such as clustering, unequal probability

sampling, categorical variables, and multi-item scales, can necessitate the use of complex

and tailored MI procedures. These more complex methods detract from the desirability of

MI since its ease of implementation and general applicability are among its main advantages.

Although simulation studies have demonstrated consequences of ignoring these features dur-

ing MI, in a more practical sense, it is not clear what advantage these complex methods

o↵er over those that may be implemented in simpler settings. The present investigation

involved exploration of this problem through application MI within the Health Behaviour in

School-aged Children study (HBSC). The current literature was examined and best practices

were ascertained. A set of MI methods ranging in complexity were identified and applied. In

particular, applied MI methodology di↵ered by: i) the extent to which the clustered nature

of the HBSC data was incorporated in the imputation procedure; ii) the approach used to

impute a multi-item measurement; and iii) the parametric assumptions involved. MI was

e↵ective at regaining e�ciency and reducing concerns about bias, however, no particular

MI method resulted in substantially di↵erent findings or conclusions. It was concluded that

more simple MI methodology is adequate in the context of the investigated research ques-

tions. Situations where more complex MI methods may be required were identified, in order

to make recommendations for circumstances which extend outside of the analysis goals in

the present investigation.
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1 Introduction

Missing data is a nearly inevitable problem in large-scale survey research. Individuals often

fail to respond to particular elements of a survey, which leads to scattered missingness

throughout a data set. Ignoring these individuals during analysis usually results in throwing

out substantial amounts of observed data, as well as potentially biasing parameter estimates

(Little and Rubin, 2002). The pervasiveness of missing data has motivated extensive research

on developing and evaluating methods for missing data treatment. One of these methods in

particular, multiple imputation (MI) as described by Rubin (1987), has received extensive

attention due to its flexibility, ease of use, and its ability to provide unbiased and e�cient

estimators (Little & Rubin, 2014; Reiter & Raghunathan, 2007; Schafer & Graham, 2002;

White, Royston, & Wood, 2011).

Multiple imputation involves filling in missing values to create a complete data set, in a way

that accounts for both the natural variability in the data and the uncertainty involved in

imputing values. The goal of imputation is not to generate accurate predictions of missing

values, but rather to replace them in a way that maintains the relationships in the data set

in order to exploit the available data from a partially-observed individual (Little & Rubin,

2014). For this reason, it is of utmost importance that the procedures used during MI

are congenial to the model that will be used for analysis (Meng, 1994). In other words,

the imputation procedure must maintain the relationships of interest in any analyses to be

conducted on the imputed data.

Ensuring congeniality when utilizing MI in complex survey settings poses unique challenges

(Andridge, 2011; Carpenter & Kenward, 2012; Kim et al., 2006; Reiter et al., 2006; Seaman

et al., 2012). Therefore, as the popularity of large-scale survey research based on complex

designs has increased, research based on more involved and tailored MI procedures has pro-
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ceeded as well (Carpenter, Goldstein, & Kenward, 2011; Schafer, 2009; van Buuren, 2011;

Zhao & Yucel, 2009). However, these complex procedures are more computationally inten-

sive, more challenging to implement, and less widely available in popular software (Drechsler,

2015). Clustered data, unequal probability sampling, and multi-item measurements, seem

to necessitate the use of these more complex MI procedures thereby detracting from the

desirability of MI. It is not clear how much is gained, in a practical sense, by using more

complex MI procedures in order to account for these features over what may be implemented

in a less complex setting.

This practicum involved exploration of this problem through application of MI in an applied

data set: the 2009-2010 Canadian Health Behaviour in School-aged Children study (HBSC).

The HBSC is a cross-national survey conducted in collaboration with the World Health

Organization (WHO) every four years in over 40 countries (Freeman et al. 2011). The

2009-2010 Canadian HBSC study is characterized by many typical complex survey features

including multi-stage cluster sampling, disproportionate stratified sampling, multi-item scale

measures, and many categorical variables. Many variables of interest for ongoing research

questions within the HBSC data set have portions of missing values due to non-response

(Freeman et al., 2011). The missing data within these variables must be handled in a way

that is congruent with the complex features of the data set. Comparative application of MI

methodology within the HBSC was directed by two main goals:

1. To evaluate how the methodological complexity of MI (i.e. the extent that the MI

procedure accounts for particular complex survey features) impacts the results of a

specific set of analyses within the HBSC; and

2. To evaluate the practical implications of these results as they may extend to other

analyses.

Comparative application of such methodology in a realistic context is limited in current
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literature and can provide valuable information not gained from the restrictive settings in

simulation studies. Further, it will serve to inform recommendations for methods which may

be applied in the immense number of projects that involve data from the HBSC study. In

particular, this comparison of MI methods focused on the following complexities:

i. The HBSC utilizes a multi-stage sampling design resulting in data that is clustered

in nature; this complex survey feature must be considered during MI (Andridge,

2011; Carpenter & Kenward, 2012; Kim et al., 2006; Reiter et al., 2006; Seaman et

al., 2012).

ii. The HBSC involves several multi-item measures, which could be imputed either as

a total score, or as a series of individual variables which make up the total score

(Eekhout et al., 2014; Gottschall et al., 2012).

1.1 Report Structure

The remainder of this report is structured as follows. Section 2 includes a general summary

of some necessary missing data concepts and an overview of some common missing data

methodology. Section 3 introduces the HBSC in detail, along with an overview of survey

analysis in the complete data setting with particular attention to the challenges present in

the HBSC. In Section 4, MI will be overviewed in more detail, along with a review of the

literature surrounding the application of MI in complex survey settings. Section 5 is dedi-

cated to presenting the comparative application of MI methods within the HBSC, including

a preliminary complete-case analyses informed by the literature review, a description of the

implemented imputation methodology, and a comparison of results from the complete-case

analyses and the various MI methods. Finally, Section 6 involves a more in-depth comparison

of the imputation methods, along with conclusions and recommendations.
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2 Background

In survey research, two scenarios result in missing data: unit non-response and item non-

response (Little, 1988). Unit non-response describes missing data that occurs when a sam-

pled individual fails to complete any of the survey. Data available for this individual are

usually restricted to demographic or geographic characteristics and, therefore, there is a more

restricted range of methods to handle such missing data (Little & Rubin 2014). In contrast,

item non-response occurs when an individual completes part of a survey but fails to respond

to specific questions. This may occur when an individual fails to notice a question, or chooses

not to answer it for any number of reasons. Item non-response is scattered throughout the

data set, and the remaining data from partially-observed individuals allows for implementa-

tion of a wider range of missing data analysis techniques. The present investigation focuses

on the methodology directed towards handling item non-response.

2.1 Missing Data Mechanisms

Understanding the cause (or mechanism) leading to the missing data is a key component in

determining a suitable analysis strategy. Rubin (1976) formalized the concept of missing data

mechanisms which have since become referred to in the literature as three distinct groups

(Little & Rubin, 2014; Schafer & Graham 2002). Consider a data set Y = (y1, y2, ..., yk)

with k variables, some of which have missing values. This data set can be partitioned into

its observed and unobserved components referred to as Y
obs

and Y

mis

respectively. Let R be

the vector of response indicators, so that R
i

is 1 when element i is observed and 0 when it

is missing. When P (R|Y ; �) = P (R|Y
obs

, Y

mis

; �) = P (R|�), the missing data mechanism is

called Missing Completely At Random (MCAR). When P (R|Y ; �) = P (R|Y
obs

, Y

mis

; �) =

P (R|Y
obs

; �), then missing data mechanism is called Missing at Random (MAR). When
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P (R|Y ; �) = P (R|Y
obs

, Y

mis

; �) 6= P (R|Y
obs

; �), the missing data mechanism is called Missing

Not At Random (MNAR). Roughly speaking, if the propensity to respond does not depend

on any observed or unobserved data, then the data are MCAR; if the propensity to respond is

related to other observed responses but unrelated to the missing values then data are MAR;

if propensity to respond is related to the missing values even after controlling for observed

values then data are MNAR.

Consider, for example, a survey which asks participants to report their yearly income. Sup-

pose the page on which this question was printed was accidentally left out of a random set

of surveys. These missing values can be considered a random sample of the (theoretical)

full data set and, therefore, MCAR. Suppose instead, those who have certain professions are

more likely to refuse to answer the question of yearly income and also tend to have lower

incomes. Following conditioning on “profession” the likelihood of an individual refusing to

report their yearly income will be independent of the missing values and, therefore, the data

are considered MAR. Finally, suppose participants with a lower yearly income simply less

inclined to report it. The likelihood of response now depends on the missing values them-

selves even after controlling for profession and, therefore, the data are considered MNAR.

Missing data mechanisms are important to consider, since common missing data approaches

are only valid under particular missing data mechanisms and will lead to bias if the assumed

mechanism is not appropriate (Little & Rubin, 2014).

2.2 Complete-case Analysis

When item non-response occurs in survey settings, it remains common practice to imple-

ment what is referred to as complete-case analysis (CCA). This strategy simply discards

all individuals with incomplete variables using list-wise deletion. Although this is perhaps

the simplest approach to handling missing data, this strategy has potential short comings
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in terms of e�ciency and, more importantly, bias. Firstly, discarding incomplete cases is

potentially ine�cient and could lead to a loss of statistical power since observed data are

discarded. Secondly, if the complete cases di↵er systematically from those with missing

data, then the reduced data set can be biased and erroneous conclusions can arise (Little

& Rubin, 2014). If data are MCAR, then list-wise deletion of individuals with incomplete

data is often considered an adequate strategy despite the loss of e�ciency because it will

not introduce bias. Additionally, CCA can be unbiased in some circumstances even if data

are not MCAR. Specifically, if only the outcome variable is incompletely observed and the

missingness is can be considered MAR given the covariates included in the model, then re-

sults will not be biased (Sterne et al., 2009). Similarly, if the occurrence of missing data

in predictor variables is unrelated to the outcome, CCA will not introduce bias (Sterne et

al., 2009). Unfortunately, the assumption that the data are MCAR or adhere to one of the

above criteria is often implausible. It is more reasonable to assume that data are MAR

after controlling for variables which are part of the substantive analysis as well as on aux-

iliary variables. Therefore, missing data treatment methods which allow for incorporation

of auxiliary variables are advantageous. In particular, MI is consistent for MAR data, so

determining suitable variables to make this assumption plausible becomes an important task

(Carpenter & Kenward, 2012). MI can readily be extended to MNAR settings by making

untestable assumptions about the nature of the relationship between missingness and the

unobserved data; this approach is important for the implementation of sensitivity analysis

(Carpenter & Kenward, 2012). Such sensitivity analyses are important in practice, but they

are not a focus of this practicum.
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2.3 Inverse Probability Weighting

Inverse probability weighting can be considered an extension of CCA that attempts to ad-

dress the issues of e�ciency and bias by incorporating partially-observed or auxiliary data in

the creation of weights in an attempt to render the missingness MAR (Little & Rubin, 2014;

Seaman & White, 2013). The inverse probability weighting method assigns respondents

weights equal to the inverse of their probability of being completely observed by estimating

the probability of response within class based adjustment cells or through parametric mod-

elling of propensity to respond. Inverse probability weighting is typically applied to handle

unit non-response, as application when the pattern of missingness is scattered throughout

the data set is often infeasible (Carpenter et al., 2006; Seaman &White, 2013). Furthermore,

applying inverse probability weighting in the case of item non-response may still not be most

e�cient use of the information from partially-observed individuals (Carpenter et al., 2006).

Inverse probability weighting can also be implemented to account for unequal probabilities of

selection into the sample (sampling weights) or to ensure that response distributions adhere

to the known distribution of values in the population (post-stratification weights); sampling,

after all, is simply unit missingness that occurs by design (Chambers & Skinner, 2003). Typ-

ically, each of these characteristics is considered as a separate component of the probability

of inclusion in a sample and are combined to form one overall weight.

2.4 Imputation

The complete case and weighting methods discussed above do not make e�cient use of avail-

able data from partially-observed individuals. Missing data methods which fill in (or impute)

the missing variables with suitable replacement values have the advantage of avoiding the

deletion of partially-observed individuals. However, some common imputation approaches
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have important limitations. If all missing values are replaced with a single constant value (as

can be done in mean imputation) then bias can be introduced and the variability in the data

set will be artificially reduced, which can result in underestimated variances (Rubin, 1987).

Model-based imputation methods improve upon mean imputation by allowing the inclusion

of auxiliary variables during the imputation process. When chosen appropriately, inclusion

of auxiliary variables can render the data MAR and reduce bias due to non-response. For

example, regression model imputation involves regressing the variable with missing values

on a suitable set of fully observed variables in the data set. The missing values are then

imputed from predicted values of the regression model, usually augmented with random

draws from the residual distribution to model the natural variation within the missing data.

Although improving upon single value imputation, these methods fail to acknowledge the

missing data as a source of uncertainty (Rubin, 1987). Multiple imputation, first proposed

by Rubin (1987), is motivated by this idea. MI accounts for this uncertainty by generating

multiple, say m, values for each missing data point, resulting in m complete data sets. After

performing analysis on each of these data sets individually, the results can be pooled to get

a single point estimate, and a single variance estimate which incorporates both the varia-

tion within data sets (within-imputation uncertainty) and the variation between data sets

(between-imputation uncertainty).

Multiple imputation requires specification of an imputation model in order to take advantage

of auxiliary variables. Little and Rubin (2002) classify imputation methods into two general

groups based on whether imputed values are derived from either an explicit or implicit

model. Explicit approaches involve imputing values that are generated by applying a formal

model with explicit assumptions, while implicit approaches use an algorithm to identify an

individual that is “similar” to one with missing data and draw values for imputation from

the observed values of this individual. Explicit multiple imputation methods are typically
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based on parametric models, such as the regression model-based imputation described above,

and therefore rely on the associated assumptions. On the other hand, implicit models relax

the requirements of modelling assumptions. Therefore, these methods can be advantageous

when the data may involve higher-order and non-linear relationships that are not known or

are very challenging to model, and when e�ciency is not a primary concern.

Multiple Imputation can be a powerful and flexible tool for reducing bias due to missing data

and retaining the e�ciency that may be lost through CCA or inverse probability weight-

ing (Little & Rubin, 2014; Reiter & Raghunathan, 2007; Schafer & Graham, 2002; White,

Royston, & Wood, 2011). Despite these advantages, however, there are many potential chal-

lenges and complications which may arise during MI, especially in complex survey settings

such as the HBSC (Andridge, 2011; Carpenter & Kenward, 2012; Kim et al., 2006; Reiter,

Raghunathan, & Kinney, 2006; Seaman et al., 2012). Ensuring congeniality (i.e. ensuring

the imputation procedure maintains all relationships present in the subsequent analysis) is

particularly challenging in complex survey settings. When the imputation methodology and

the subsequent (or substantive) analysis are uncongenial, the results from the analysis may

be biased. If, for example, the observed outcome of interest was left out of the imputation

model for a missing exposure, then this uncongeniality would result in an attenuation of

the true relationship (Carpenter & Kenward, 2012). In that setting, the direction of the

bias is clear because the outcome and exposure were explicitly assumed to be unrelated

within those individuals requiring imputations. In complex survey settings, analyses require

complex modelling structures (Asparouhov & Muthen, 2006; Carle, 2009; Rabe-Hesketh &

Skrondal, 2006). The impact of uncongenial imputation models when analyses involve these

high-order structures is less clear. Composite variables (e.g. multi-item measurement scales)

also present an interesting challenge as they may be imputed in various ways and the ideal

method is often uncertain (Eekhout, 2014; Gottschall et al., 2012). Prior to discussing these
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challenges in more detail, it is necessary to first overview the analytical challenges of survey

data present in the complete data setting.

3 Literature Review: Analysis of Complex Survey Data

3.1 Health Behaviour in School-aged Children Study

The HBSC is a study of health and health risk behaviours in adolescent populations (Free-

man et al. 2011). It is conducted every 4 years in collaboration with the World Health

Organization and collects data through written health surveys administered in classroom

settings. Following a common international protocol, the 2009-2010 Canadian study im-

plemented a multi-stage sampling strategy in which schools were sampled from each of 11

Canadian provinces and territories (New Brunswick and Prince Edward Island chose not to

participate in the 2009-2010 cycle of the HBSC). In most provinces, a systematic sample of

schools was performed. However, in the Northern territories, a census of all students was

attempted. Initially stratified by province, the primary sampling unit was schools, which

were further stratified by type of school board (public versus separate), urban and rural

geographic status, and language of institution. A systematic sampling procedure was then

used to select schools so that they were sampled proportionally to the size of the school, as

estimated by the number of classrooms. Of the 765 randomly selected schools, 436 (57.0%)

chose to participate. When a school chose not to participate a neighbouring school with

consistent characteristics was contacted to participate instead. Generally, one or two class-

rooms were selected from each sampled school, and all students from selected classrooms

were asked to participate. Of the 33868 students in the sampled classrooms, 26078 (77.0%)

were present and chose to fill out the questionnaire on the appointed day. The number of

students who participated from each school ranges from 2 to 519 students.
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Although sampling probabilities or weights reflective of the sampling procedure are not avail-

able with the HBSC data set, weights were calculated based on population distributions by

province and grade in order to account for the disproportionate sampling between provinces

and grades. That is, all students from the same province within the same grade are assigned

a specific weight based on the ratio of the size of the sample selected from this stratum to

the size of the strata within the population of Canadian school children (i.e. a single post

stratification weight for each combination of province and grade).

The unit non-response in the study will not introduce bias if the missingness is not related

to di↵erences in the relationships of interest–an assumption that is made in the present

investigation (Little & Rubin, 2014). Item non-response is the focus of this investigation,

as the partial information available on those individuals who completed at least part of the

questionnaire can be exploited to reduce bias (Little & Rubin, 2014). Accommodating item

non-response will be explored in Section 4 and 5 while the remainder of Section 3 is focused

on appropriate analyses of the complex survey data in absence of incomplete data.

In summary, the complex survey features of the HBSC include a multi-stage sampling design

leading to clustered data, and crude survey weights which reflect disproportionate sampling

between provinces and grades.

3.2 Survey Weighting

When elements in a survey are sampled with unequal probability and the probability of

sampling is related to the outcome (after potentially controlling for covariates), then the

sample design is considered informative (Asparouhov, 2006). In this case, the sampling

process (usually reflected in a data set through the presence of sampling weights or more

general survey weights which may be adjusted for unit non-response and post-stratification)
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cannot be ignored without leading to biased estimators. A suitable strategy to account for

the sampling process depends on the inferential goals of an analysis (Chambers & Skinner,

2003). In design-based inference, the goal is to estimate features of a population which are

considered fixed (e.g. means and ratios), and the only source of variability is the sampling

distribution (Sterba, 2009). That is, the goal is to estimate what would have been observed

if a census was taken (in which case, there would be no variability for the parameters of

interest). Sampling weights cannot be disregarded when inferential goals are design-based,

otherwise, unequal probabilities of inclusion will not be accounted for and estimated values

will not be representative of the target population values (Chambers & Skinner, 2003).

In contrast to design-based inference, the use of sampling weights in model-based inference

has been debated (e.g. Little, 1993, 2004; Pfe↵ermann, 1993, 1996). The target of model-

based inference is the model parameters which generate the outcome, as opposed to finite

population characteristics (so there would be variability around our estimator even if we

had a census because we are not interested in the characteristics of this finite population,

but rather the parameters generating the finite population; Sterba, 2009). If the model

between the outcome and covariates is correctly specified and is consistent across sampling

groups, then excluding sampling weights will not introduce bias (Gelman, 2007; Little, 1993,

2004). Along these lines, a fully model-based approach to handling sampling design is to

incorporate suitable design variables (characteristics of the population on which sampling

depends, such as strata) into the model as covariates (Little, 1993, 2004, 2004; Sterba,

2009). This approach may be inadequate, however, if there is insu�cient auxiliary informa-

tion to fully describe inclusion probabilities or if the inclusion of these additional covariates

substantially modifies model interpretation (Little, 1993, 2004; Pfe↵ermann, 1996). In these

circumstances, hybrid methods which compromise between design and model-based methods

by using weighted estimation, are considered preferable (Pfe↵ermann, 1996; Sterba, 2009).
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These approaches incorporate the sampling weights into the likelihood expression, using what

is called pseudo-likelihood estimation (Pfe↵ermann, 1993). Utilizing these hybrid approaches

provides robustness to model misspecification, since incorporation of the weights allows for

design consistent estimation of model parameters (Pfe↵ermann, 1993, 1996). That is, the

parameters still have a meaningful interpretation as consistent estimators of finite popula-

tion values in the presence of model misspecification, while without weights they may just be

biased (Pfe↵ermann, 1996). It is relevant to note, however, that if sampling weights are unin-

formative (i.e. not related to the outcome after controlling for covariates), it is recommended

that they not be used in the analysis (Asparouhov, 2006). If weights are uninformative,

the reduction in the bias achieved by weighting will be overwhelmed by the increase in the

variance of the parameter estimates and should not be used (Asparouhov, 2006).

Consideration of the HBSC weights can be informed based on the above discussion. If

an analysis is to proceed based on a design-based inference framework (i.e. the goal is to

estimate finite population values, such as proportions) then the weights should necessarily be

included in analysis (Chambers & Skinner, 2003). Otherwise, the disproportionate sampling

between provinces present in the HBSC will not be captured, and estimates will not be

representative of the targeted population values. However, if the analysis is better suited

to a model-based inference framework (e.g. associative relationships), the importance of the

weights is less clear. A weighted and un-weighted analysis should be compared, and if there

are no substantial di↵erences between results, the weights can be considered uninformative

and are better o↵ being left out of the analysis (Asparouhov, 2006).

3.3 Clustered Data

The HBSC uses a multi-stage sampling strategy resulting in data with a clustered structure

in which students are nested within classrooms nested within schools. With clustered data
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the units of observation are not independent, which violates assumptions of many traditional

statistical techniques such as multiple regression. Therefore, clustered data must be handled

appropriately in order to account for the homogeneity of individuals belonging to the same

cluster (Snijders, 2011). Within design-based analyses, clustering is typically treated as a

nuisance and taken into account through the use of robust estimation of the variance of

parameters (Chea, 2009). This post hoc procedure only a↵ects standard error estimates,

however, and does not adjust the parameter estimates themselves (Cheah, 2009). While this

is suitable for simpler population estimates (e.g. means, ratios), a model-based approach

is often used to account for data clustering for more complex estimates (e.g. regression

parameters) even when a design-based inferential framework may be preferred for analysis

goals (Asparouhov 2006; Rabe-Hesketh & Skrondal, 2006 ; Cheah, 2009).

Model-based methods incorporate the clustered structure of the data into the modelling pro-

cess through the inclusion of random parameters, in mixed or multi-level models. Covariates

and factors in such models are typically referred to as fixed or random e↵ects, although Gel-

man and Hill (2006) advise against the use of these terms and recommend to instead focus

on description of the model itself. Along these lines, it is more appropriate to describe the

parameters in multi-level models as fixed or random where appropriate. A random param-

eter is allowed to vary for each level-two unit (cluster), thereby allowing for cluster specific

estimates which deviate from a mean estimate (intercept or slope). On the other hand, fixed

parameters are not estimated uniquely for each cluster. For example, a fixed intercept would

imply that the mean of the dependent variable is the same in each cluster. Allowing for a

random intercept involves estimation of both a fixed intercept component, assumed to be

invariant across clusters, and a randomly varying component which represents the deviation

of each cluster from this fixed component. For example, a linear multi-level model with ran-

dom intercepts of the relationship between Y

ij

, an outcome variable for individual i within
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cluster j, and the corresponding predictor x may be expressed as:

Y

ij

= �0j + �1xij

+ e

ij

, (3.1)

�0j = b00 + U0j, (3.2)

where we assume

e

ij

⇠ N(0, �2), (3.3)

U0j ⇠ N(0, ⌧ 2). (3.4)

The level-one model in (3.1) describes the relationship between the outcome variable Y and a

level-one predictor x through the fixed parameter �1. The level-two model in (3.2) describes

the intercept �0j as a fixed component b00, and a random component U0j that represents the

cluster specific deviation from the mean intercept b00. The residual variability in the data

is decomposed into the component attributable to variance between clusters (⌧ 2), and the

portion attributable to variance between individuals (�2). The total residual variability is

then considered the sum of these two components (⌧ 2+�

2). In some settings, the assumption

in (3.1c) is relaxed to allow the within-cluster variance to di↵er across clusters, thus replacing

�

2 by �

2
j

(Van Burren, 2011).

Estimates of random parameters themselves are usually not of direct interest. Instead interest

lies in the extent to which the random components vary between level-two units (i.e. the level-

two variance of the random parameter ⌧ 2; Nezlek, 2011). In particular, intraclass correlations

(ICCs), functions of the variances, are often of interest (Nezlek, 2011). ICCs are a measure

of the extent to which variability in the outcome is attributable to the variability between

clusters. This measure is can be estimated by fitting a model with no predictors, so the

estimated variance components are purely measures of the variability in the outcome. The
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ICC is then calculated as ratio of between-group residual variance and total residual variance:

ICC =
⌧

2

⌧

2 + �

2
(3.5)

A large ICC demonstrates high similarity between individuals in the same cluster and sug-

gests the need for multi-level modelling (Nezlek, 2011). For this reason, ICCs are often used

to determine whether multi-level modelling is necessary, however, ICCs capture only one

aspect of di↵erences between clusters and may not be well suited to this task (Nezlek, 2011).

That is, ICCs reveal little about how the actual relationships under study vary between

clusters.

Generalized linear multi-level models are extensions of linear multi-level models that allow

for modelling of binary, categorical, or other non-normally distributed responses through the

application of a link function (Rabe-Hesketh & Skrondal, 2001). Notably, the level-one error

variance for models with certain link functions (e.g. logit and probit) is typically assumed

to be fixed (Breslow & Clayton, 1993; Demidenko, 2013; Rabe-Hesketh & Skrondal, 2001,

2006). For example, in a logistic multi-level model the level-one error variance is fixed as

�

2 = ⇡

2

3 by assumption and is not estimated (Rabe-Hesketh & Skrondal, 2006). Instead, the

total residual variance is estimated as (⌧ 2 + ⇡

2

3 ). Therefore, the inclusion of random e↵ects

increases the overall residual variance by allowing ⌧

2
> 0, but unlike with linear multi-level

models, no corresponding change occurs in the individual level variance �

2. To account for

this, the dependent variable is rescaled and model parameter estimates increase in absolute

magnitude. Consequently, the e↵ects estimated in a single-level logistic model, �SL, are

approximately related to the e↵ects estimated in a multi-level logistic model with random

intercepts, �MM , (in which the fixed parameter estimates are conditional on the random
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parameter estimates) as follows:

�

SL ⇡
s

1

1 + ⇡

2

3 ⌧

2
�

MM (3.6)

This makes accurate estimation of ⌧ 2 in multi-level logistic models imperative (Rabe-Hesketh

& Skrondal, 2001, 2006). Furthermore, given that the multi-level model is correct, estimates

from ordinary logistic regression which disregard random components will be biased toward

the null (Breslow & Clayton, 1993; Demidenko, 2013; Neuhaus et. Al., 1990).

Using a multi-level model in the presence of clustered data (even when clustering appears

minimal) can be beneficial due to the e↵ect of partial pooling (Gelman & Hill, 2006). This

is particularly true when cluster sizes are unbalanced. When the multi-level structure of

the data is ignored with use of single-level model, point estimates are based on relationships

across the whole sample. With a random intercept model, a separate mean is estimated

for each cluster, specifically, the overall mean b00 plus the cluster specific deviation U0j in

equation (3.2). This could also be achieved by including fixed parameters for cluster status

indicators, however, with a multi-level model these cluster specific means are constrained to

come from a normal distribution with mean b00 (due to the assumption in equation (3.3);

Gelman & Hill, 2006). Therefore, individual cluster estimates are represented in the final

point estimates, but estimates for smaller clusters (which are less certain) are “shrunk”

towards the overall mean b00 and, therefore, towards the e↵ects estimated for the larger

clusters (which are more certain; Gelman & Hill, 2006). In contrast, in single-level models,

the extent to which point estimates are skewed toward the relationships within the largest

clusters is more extreme. Therefore, the relationships present in small clusters may not

be adequately represented (Gelman & Hill, 2006). This does not necessarily mean fixed

parameter estimates from a single-level model will be incorrect, but it does point to an

advantage of using multi-level models with unbalanced clusters: they allow for relationships
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occurring in smaller clusters to be more represented in point estimates (Gelman & Hill,

2006).

3.4 Survey Weighting in Multi-level Models

The HBSC involves both clustered data and strata with di↵erent survey weights. A fully

model-based approach may be attempted by incorporating relevant design features into the

multi-level model. Fixed parameters could be used to account for stratification with unequal

selection probabilities, while random parameter could be used to account for school-level

clustering as described above. However, as with single-level models, if this approach does

not su�ciently account for the probability of inclusion or if it results in unwanted changes

to model interpretation, a hybrid approach is favoured. (Pfe↵ermann, 1996; Sterba, 2009).

Adaptations to the hybrid method have been developed for use with multi-level models,

although suitable implementation of this hybrid approach in the multi-level context is some-

what more challenging than the single-level case (Asparouhov, 2006; Rabe-Hesketh and

Skrondal, 2006). Asparouhov (2006) and Rabe-Hesketh and Skrondal (2006) propose the

multi-level pseudo-maximum likelihood method (MPML), which estimates the population

likelihood function by weighting the sample likelihood function at each level of the multi-

level model. This is the method for incorporating weights into multi-level models that is

implemented in many popular software packages including SAS (in SAS/STAT 13.1 and

later), Mplus, and Stata (Asparouhov & Muthen, 2006; Rabe-Hesketh and Skrondal, 2006;

Zhu 2014). It is essential that the software be used correctly when implementing the MPML

method, in particular, sampling weights must be constructed and specified di↵erently than

the weights used for single-level analysis (Asparouhov, 2006; Rabe-Hesketh & Skrondal,

2006). The method requires both a level-two weight w
j

(the inverse of the probability that

cluster j is selected), and a conditional level-one weight w
i|j (the probability of selecting a
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level-one unit i, given that the level-two cluster j was selected).

There are two di�culties that arise in this setting. The first di�culty is that, unlike with

single-level models, scaling of level-one weights for use in MPML estimation can influence

point estimates of the model (Asparouhov, 2006; Asparouhov &Muthen, 2006; Rabe-Hesketh

& Skrondal, 2006). In multi-level models, the distribution of random e↵ect estimates is af-

fected by the ratio of the cluster sample size and the sum of the weights within the cluster

(for a detailed explanation of this e↵ect see: Rabe-Hesketh and Skrondal, 2006). Typically,

the weights are scaled so they sum to the cluster sample size n
j

, which generally achieves the

most accurate results (Asparouhov, 2006, 2008; Asparouhov & Muthen, 2006). The second

di�culty is that secondary data sets typically only include an overall unconditional survey

weight (representing the overall probability of selection). Neglecting to use level-two weights

implies clusters were selected with equal probability, which may lead to biased estimators.

In this circumstance, Asparouhov (2006) suggests a single-level model be used instead, or if

weights are uninformative, that they be excluded from the analysis. Alternatively, approxi-

mations of the cluster level weights have been proposed (Goldstein, 2003; Kovacevic and Rai

2003). A simulation study evaluating the performance of these approximations showed that

the method suggested by Kovacevic and Rai (2003) may perform adequately in some scenar-

ios, however, it requires that the number of clusters in the population is known (Stapleton,

2012). Stapleton (2012) warns against using weight approximation methods when neither

cluster-level or conditional level-one weights are available as no approximation methods have

shown to perform reliably in this setting.

The weights in the HBSC are constructed based on the sampled proportion of level-one

units (students) in subpopulations determined by province and grade (i.e. post-stratification

weights). These weights are not conditional weights, dependent on belonging to a given

cluster and cannot be attributed to either cluster-level or conditional level-one weights.
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Rabe-Hesketh and Skrondal (2006) caution that post-stratification weights are not suitable

for use in MPML estimation due to their unconditional nature. Further, Stapleton (2012)

suggests that further studies are required to understand the appropriateness of weight ap-

proximation methods in the setting of post-stratification weights. Therefore, there is no clear

approximation method that would be suitable for the HBSC weights. The bias which may

be introduced by using these weights in multi-level analysis is not clear, and may be minimal

in circumstances which only fixed parameters are of interest. However their use in multi-

level models is not supported by the current literature (Asparouhov, 2006; Rabe-Hesketh &

Skrondal, 2006; Stapleton, 2012).

3.5 Summary

Analysis of complex survey data, such as that from the HBSC, must be carefully considered,

and should be directed by the appropriate inferential framework for the question at hand.

When estimating features of a finite population through design-based inference, it is neces-

sary that weights be incorporated in analysis to avoid bias (Chambers & Skinner, 2003). On

the other hand if the goal is to describe in a way that is more readily generalizable the process

by which the data were generated, a model-based approach is appropriate and weighting may

not be necessary (Little, 1993, 2004; Gelman, 2007). With the HBSC data, a model-based

analysis should involve the use of a multi-level model in order to account for the dependence

of individuals within clusters. However, the weights provided with the HBSC data set are

not appropriate for use with the MPML method for weighted multi-level models. Instead,

a model-based approach that accounts for the information present in the weights though

inclusion of dummy variables for grade and province strata as covariates should be adequate

in most scenarios. A weighted and unweighted single-level analysis can be performed to as-

sess if weights are informative beyond this model-based approach. If substantial di↵erences
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are observed between results from weighted and unweighted analyses (assuming a correctly

specified model), it may be preferable to use a hybrid approach to include the weights in a

single-level model with SEs adjusted for clustering (Asparouhov, 2006; Pfe↵ermann, 1993,

1996; Sterba, 2009).

Nonetheless, neglecting to use a multi-level model in the presence of clustered data such

as the HBSC may have important consequences. Firstly, when analysis involves a logistic

regression, failing to include an existing random e↵ect does not yield unbiased estimators as

with the linear regression case (Breslow & Clayton, 1993; Demidenko, 2013; Rabe-Hesketh

& Skrondal, 2001, 2006). The inherent link between random component variances and

point estimates in generalized linear multi-level models means that, given the model which

includes a random component is correct, the corresponding single-level logistic model will bias

parameter estimators towards the null (Breslow & Clayton, 1993; Demidenko, 2013). This

also highlights the importance of accurate estimation of the random variance components

in generalized linear multi-level models, which may be compromised with the use of the

unconditional weights provided in the HBSC data set (Asparouhov, 2006; Rabe-Hesketh

& Skrondal, 2001, 2006; Stapleton, 2012). Secondly, since the clusters in the HBSC data

set are unbalanced (ranging from 2 to 519 students per school), the partial pooling which

occurs during multi-level analysis provides the advantage of ensuring that small clusters

are represented in point estimates (Gelman & Hill, 2006). In a single-level model, the

relationships occurring in the largest clusters will dominate the results.
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4 Literature Review: Multiple Imputation in Complex Surveys

4.1 Multiple Imputation

Multiple imputation (introduced by Rubin, 1987, and discussed in detail in Rubin, 1987,

2004) has become a very popular approach for analyzing incomplete data, owing to its ease

of use, flexibility, and potential to reduce bias and improve e�ciency in data sets with missing

values (Little & Rubin, 2014; Schafer & Graham, 2002; White, Royston, & Wood, 2011).

It is widely available for use thanks to its implementation in popular statistical software

programs such as PROC MI, MIANALYZE, and IVEware in SAS (SAS Institute Inc., 2008;

Raghunathan et al., 2002); the packages mice (van Buuren & Groothuis-Oudshoorn, 2011),

Amelia II (Honaker, King & Blackwell, 2011), and mi (Su et al., 2011) in R; ICE and MI

commands in STATA (Royston, 2011; Royston & White, 2011); and NORM, MIX, CAT,

and PAN packages in S-plus (also available in R; Schafer, & Olsen, 1998; Schafer, 2012).

MI is motivated by the goal of preserving the advantages of imputation while allowing

the uncertainty due to imputation to be assessed. To achieve this a MI strategy must i)

fill in missing values with plausible replacements that preserve the relationships present in

the observed data, while incorporating random variation; and ii) use independently drawn

imputations to generate multiple imputed data sets; the variation across these data sets

reflects the uncertainty about the imputations (Little & Rubin, 2014).

Carrying out this process m times results in m imputed data sets. Each completed data set

can then be analysed separately as if it were the true data, and the m resulting estimators

can be combined for inference (Rubin, 1987). By generating multiple imputed data sets, the

within-imputation uncertainty and the between-imputation uncertainty can be examined in

order to calculate appropriate standard errors. The combining rules put forth by Rubin
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(1987), known as Rubin’s rules, are as follows. Let ✓̂
i

denote the estimate of the parameter

of interest ✓ from the ith out of m imputed data sets and let Û
i

denote the variance associated

with ✓̂

i

. The combined point estimate of the parameter can be calculated as the mean of the

m point estimates,

✓̄ =
1

m

mX

i=1

✓̂

i

. (4.1)

The variance of ✓̄ is estimated as

T = Ū + (1 +
1

m

)B, (4.2)

which is a weighted sum of the within-imputation variance

Ū =
1

m

mX

i=1

Û

i

, (4.3)

and the between-imputation variance

B =
1

m� 1

mX

i=1

(✓̂
i

� ✓̄)2. (4.4)

These rules are easy to apply and, for the most part, generally applicable, adding to the

flexibility of MI.

In the Bayesian terminology which underlies the MI framework, values for imputation should

be repeated independent samples from their posterior predictive distribution (Rubin, 1987).

Generally, this involves specifying a parametric imputation model for the data and using

this to derive (or approximate) the conditional distribution of the missing data given the

observed data. Care must be taken in specifying this imputation model in order ensure that

it is appropriate for the desired analysis; this idea is discussed further in the next subsection

and forms the basis of the explorations throughout this report.
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More specifically, consider a substantive analysis model based on a simple linear regression of

a incomplete variable Y = (Y
mis

, Y

obs

) on a complete variable X. Suppose an auxiliary vari-

able V has been identified which renders the data MAR (using simplified notation from Sec-

tion 2.1) so that P (R|Y,X, V ) = P (R|X, V ) and, equivalently, P (Y |X, V,R) = P (Y |X, V ).

An imputation model, P (Y |X, V ; ⇣), is fit to the observed data to yield the vector of parame-

ter estimates ⇣̂. Although ⇣ is not of interest, this fitted model is used to generate a complete

data set which is analysed with the substantive model to estimate the parameter of interest ✓.

This is done by randomly drawing the parameter vector, ⇣̂⇤, from it’s posterior distribution,

followed by drawing Y

mis

conditionally given ⇣̂

⇤ to yield the first of m imputations. This

two-step procedure is used to ensure appropriate sampling variability between the m sets

of imputations so they can be considered proper ; imputations must be proper for Rubin’s

rules to hold (see Rubin, 1987, for a formal definition). In contrast, improper imputations

will lead to insu�cient variability between imputations and, therefore, underestimation of

the total variance of the parameter of interest (Rubin, 1987).

In practice, there are many ways to implement MI, however, one of three main approaches

is typically used:

1. Joint modelling (Rubin & Schafer, 1990; Schafer, 1997): The joint modelling method

involves specifying a joint distribution for multivariate data, estimating the parameters

for this distribution, and then drawing imputed values from this distribution. Although

this refers to any MI procedure in which the data are assumed to follow a joint probability

distribution, in practice, the joint modelling method nearly always involves the assumption

that the data follow a multivariate normal distribution. It can be challenging to make the

necessary draws directly from the specified joint model, so a special case of a Markov Chain

Monte Carlo (MCMC) procedure called a Gibbs Sampler is typically used. During joint-

multivariate normal model imputation this procedure alternates between estimating the
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means, variances and covariances of the distribution, and drawing values for imputation

(the Gibbs sampling procedure and other commonly used approximation algorithms are

described in detail by Carpenter & Kenward, 2012, Appendix A).

2. Fully conditional specification (Raghunathan et al., 2001; van Buuren et al, 2006): In

contrast to the joint modelling approach, the FCS method does not aim to model all

incomplete variables jointly. Instead, FCS imputes data on a variable-by-variable bases,

with the goal of specifying a full multivariate distribution for the variables through a set of

conditional distributions for each incomplete variable. Imputation then proceeds iteratively

across all of these conditional imputation models for a specified number of times, in order

to converge to a theoretical joint distribution. For example, suppose that both Y and X

variables in the substantive model described above have missing values. Using the described

imputation model, the FCS algorithm involves the following steps:

(a) Fill in X

mis

and Y

mis

with some starting values (e.g. simple mean imputation) to

generate the imputed complete variables X
imp

and Y

imp

(b) Fit a simple linear regression of the incomplete variable Y on X

imp

and V in order to

estimate the associated parameters ⇣̂
Y

(c) Randomly draw new parameters, ⇣̂⇤
Y

based on the fitted model in step (b)

(d) Use the parameters ⇣̂⇤
Y

to generate stochastic imputations for Y
mis

to update Y

imp

(e) Fit a simple linear regression of the incomplete variable X on Y

imp

and V in order to

estimate the associated parameters ⇣̂
X

(f) Randomly draw new parameters, ⇣̂⇤
X

based on the fitted model in step (e)

(g) Use the parameters ⇣̂⇤
X

to generate stochastic imputations for X
mis

to update X

imp

(h) repeat steps (b)-(g) for a specified number of cycles (until convergence) in order to

generate the first set of imputations.
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(i) repeat steps (b)-(h) m times in order to generate m imputed data sets

Since the conditional models in this example are simple linear regressions (and variables

are assumed to be conditionally normally distributed), they are known to adhere to a

joint-multivariate normal distribution. Therefore, in this case, FCS is equivalent to the

joint-multivariate normal modelling approach (Hughes et al., 2014). Alternatively, each

conditional imputation model can be chosen based on the type of variable that is being

imputed. For example, a logistic regression may be used to impute a binary variable. Al-

though this flexibility of FCS may provide an advantage when imputing discrete data (van

Buuren, 2007), there is no guarantee that the conditional models will be compatible with

an existing joint model (Raghunathan et al., 2001; van Buuren et al, 2006). Despite this

theoretical limitation, there are many simulation and empirical studies which show good

performance of this method even when each conditional model is not clearly compatible

with a joint distribution (Lee & Carlin, 2010; Van Burren et al., 2006; Van Burren, 2007;

White et al., 2011)

3. Non-parametric (implicit): To this point, discussion has focused on specifying an explicit

parametric MI model in order to generate imputations. In contrast, implicit model (non-

parametric) MI algorithms allow for the relaxation of these modelling requirements and can

be advantageous in many settings. Broadly, these methods involve imputing missing values

with observed values from other individuals. This is usually accomplished by identifying a

suitable donor individual or set of donors (a donor “pool”) from which to draw imputations

for an individual with missing values (Andrige & Little, 2010). Non-parametric imputation

exploits auxiliary information from the observed data in the formation of donor pools in

the hopes of rendering the missingness mechanism MCAR within each donor pool (An-

drige & Little, 2010). This may be accomplished through formation of cross-classification

cells based on key variables or the estimated propensity to respond. Alternately, nearest
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neighbour methods are based on identifying a single donor or set of k donors that mini-

mize a specified measure of distance to the case with missing values (Andridge & Little,

2010; Carpita & Manisera, 2011; D’Orazio , 2011; Siddique & Belin, 2008; Jonsson Wohlin,

2004). Randomly selecting donors from these defined donor groups allows for preservation

of the natural variability in the data set.

In order to incorporate the uncertainty associated with imputing values, donors can be

repeatedly selected from within the donor pools to perform multiple imputation. Care must

be taken, however, to ensure that this repeated sampling constitutes “proper” multiple

imputation so that Rubin’s rules hold (Rubin, 1987); the commonly-employed hot deck

imputation (Andrige & Little, 2010) for example, does not result in “proper” MI, but

with only slight modifications to this approach, Approximate Bayesian Bootstrapping can

be employed and Rubin’s rules will be valid (Koller-Meinfelder; 2009; Rubin & Schenker,

1986).

Other procedures which allow for relaxation of parametric modelling requirements, such

as random forest procedures, have been implemented (Shah et al., 2014; Stekhoven &

Buhlmann, 2012). Random forest imputation is an extension of classification and regression

trees, which allow flexible, non-linear modelling by findings optimal cut points in predictor

variables to recursively subdivide the data (Shah et al., 2014). Since these algorithms

do not rely on assumptions about specified parametric models, they are more capable of

capturing complex non-linear relationships and interactions between variables (Stekhoven

& Buhlmann, 2012; Shah et al., 2014).

4.1.1 Congeniality During Multiple Imputation

Establishing a suitable model (implicit or explicit) for imputation is imperative for achieving

unbiased results following MI (Meng, 1994). Firstly, the imputation model should be cor-
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rectly specified, which can be challenging as the data do not usually conform to a convenient

model. Secondly, the imputation model must accurately maintain all relationships within

the data that will be part of any subsequent analyses (i.e. the model must be congenial).

Fortunately, with moderate amounts of missingness, imputation methods are typically quite

robust to violations of the underlying assumptions of the imputation model (Allison, 2001;

Schafer, 1997). Uncongeniality, on the other hand, can readily lead to biased results and

emphasis should be placed on ensuring that the imputation model reflects necessary data

features and relationships (Carpenter & Kenward, 2012; Meng, 1994; Schafer, 1997). There-

fore, an imputation model should minimally include all variables and relationships present in

the substantive analysis (i.e. the response model of interest). This includes interactions and

other non-linear relationships, as well higher-order data structures. For example, data with

a clustered structure may be analysed appropriately with a multi-level model and, therefore,

an appropriate imputation model should also be multi-level (this topic is addressed in more

detail in the following sections; Andridge, 2011; Reiter et al., 2006).

A key advantage of MI is the ability to utilize auxiliary variables to make the assumption that

the data are MAR more plausible; inclusion of auxiliary variables can also serve to improve

the precision of the imputations (Carpenter & Kenward, 2012). However, when auxiliary

variables are included in the imputation model, the model for imputation and the model used

for analysis will not match; the imputation model is no longer considered strictly congenial

(Meng 1994). An imputation model is considered “richer” than the substantive model when

it allows for the relationships of interest within the substantive model as well as incorporat-

ing auxiliary variables or relationships, so that it contains the congenial imputation model

nested within it (Carpenter & Kenward, 2012; Schafer, 2003). Alternatively, an imputation

model may also be “poorer” than the substantive model when variables or relationships in

the substantive model are missing from the imputation model. Uncongeniality from a richer
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imputation model is not a practically important problem and is, in fact, considered beneficial

due to the increase in plausibility of the MAR assumption and the increase in e�ciency from

added information (Meng 1994; Rubin, 1996; Schafer, 2003). In contrast, if uncongeniality

results from a poorer imputation model, MI will not adequately maintain the relationships

between variables and may introduce new biases rather than reducing biases inherent in

the complete-case data (Meng 1994; Rubin, 1996; Schafer, 2003). A rich imputation model

with a potentially large number of variables, interactions, and higher-order relationships

can be challenging to capture with a parametric model (Sterne et al., 2009). Consequently,

non-parametric MI can often be advantageous; non-parametric models do not require distri-

butional assumptions so they can implicitly account for non-linear terms and interactions,

and have shown superior performance in cases of high dimensional complex data (Carpita &

Manisera, 2011; Liao et al., 2014; Shah et al., 2014; Stekhoven & Buhlmann, 2012).

Note that, inclusion of too many auxiliary variables can lead to problems with identifiability

or convergence of estimation procedures and can increase small-sample variance (Carpenter

& Kenward, 2012; Schafer, 2003). Therefore, auxiliary variables should be chosen carefully;

they can generally be selected if they satisfy either of two criteria described by Carpenter

and Kenward (2012, pg 72):

1. The variable is predictive of missingness as well as with the variable being imputed, or

2. The variable is predictive of the variable being imputed.

4.2 Multiple Imputation in Complex Surveys

Using MI to handle missing data in complex survey settings introduces additional challenges

for ensuring congeniality (Andridge, 2011; Carpenter & Kenward, 2012; Reiter et al., 2006,

2012; Seaman et al., 2012). It has been repeatedly demonstrated that failure to account
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for survey design features (e.g. survey weights and clustered data) when employing MI may

result in biased estimators and poor confidence interval coverage (Andridge, 2011; Carpenter

& Kenward, 2012; Reiter et al., 2006; Seaman et al., 2012). Beyond sampling features,

complex survey data often have other characteristics that make it challenging to specify

congenial imputation models. These include, collections of mixed variable types (continuous

and discrete), sets of multi-item scales, and potential variable restrictions or skip patterns.

These features add additional challenges when using MI for complex surveys and must also

be carefully considered (Carpenter & Kenward, 2012; Eekhout, 2014; Gottschall et al., 2012;

Lee & Carlin, 2010; Yucel, 2011).

4.2.1 Categorical Data

Survey data commonly consist of a mix of categorical and continuous variables, however,

except in special circumstances where the number of variables is small, methodological de-

velopment of MI has typically focused on the optimality of the joint-multivariate normal

modelling approach (Carpenter & Kenward, 2012). Fortunately, many simulation studies

have shown that imputation procedures are quite robust to departures from the assumption

of joint normality (Bernaards et al., 2007; Kropko et al., 2013; Lee & Carlin, 2010; Yucel,

2011). Categorical variables can be imputed using models for continuous variables by as-

suming that they are discretized realizations of an underlying latent normally-distributed

continuous random variable. For example, dichotomization of a latent normal variable re-

sults in binary data. This approach has been shown to perform well for binary variables (or

nominal variables considered as a set of binary variables) and ordinal variables, especially

when limited constraints are applied and no post-imputation rounding is used (Bernaards et

al., 2006; Demirtas, 2009; Horton et al., 2003; Jia & Enders, 2015; Rodwell et al., 2014; von

Hippel, 2013). Specialized rounding procedures following imputation of categorical data as
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continuous variables can be employed when the variables must maintain to their categoriza-

tion, although not rounding is preferable (Bernaards et al., 2006; Demirtas, 2009; Horton et

al., 2003). In some cases, the latent normal approach may distort non-linear relationships

between outcomes and exposures (Lee et al., 2012). In these circumstances, imputing an

ordinal variable as a set of binary dummy variables (as with nominal data) may be preferable

(Lee et al., 2012).

The FCS approach allows for imputation of categorical variables through specification of

logistic, multinomial, or other imputation models for non-normally distributed data (Van

Buuren, 2006). The FCS approach may modestly out-perform the joint modelling approach

when imputing discrete variables (Van Buuren, 2007; Yu et al., 2007). In general, however,

di↵erences in the performance of the two approaches are negligible if the joint modelling ap-

proach appropriately employs the techniques described in the previous paragraph (Bernaards

et al., 2006; Carpenter & Kenward, 2012; Demirtas, 2009; Horton et al., 2003; Jia & Enders,

2015; Rodwell et al., 2014; von Hippel, 2013). It should also be noted that using the FCS

approach with categorical regression models involves the risk of perfect prediction. Perfect

prediction, occurs when, for a certain combination of covariate values there is no variation

in observed values of the outcome variable (White et al., 2010, 2011). Perfect prediction (or

near-perfect prediction) prevent the iterative FCS approach from converging and manifest

through unpredictable parameter estimates and inflated standard errors (White et al., 2010,

2011). Reducing the number of categorical auxiliary variables in the imputation model and,

where possible, collapsing variables with a large number of categories can reduce the risk

of perfect prediction. When these solutions are not practical, simple adjustments such as

adding a few extra observations to the incomplete variable (known as data augmentation)

can successfully avert perfect prediction (White et al., 2010, 2011).

Finally, non-parametric imputation methods, such as the aforementioned nearest neighbour
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and random forest procedures, can appropriately handle categorical variables without making

strong assumptions about the underlying distributions (Andridge & Little, 2010; Carpita

& Manisera, 2011; Jonsson & Wohlin, 2004; Liao et al., 2014; Stekhoven & Buhlmann,

2012). Since values for imputation are selected directly from the observed values, these

methods ensure that all imputations are within a correct range and adhere to categorical

boundaries. Some studies have shown superior performance of these methods over fully

parametric approaches in cases with large numbers of mixed variables (Carpita & Manisera,

2011; Liao et al., 2014; Shah et al., 2014)

4.2.2 Composite Measurements

Another common feature of survey data is the presence of multi-item scales and measures

(Eekhout et al., 2014; Gottschall et al., 2012; Shrive, 2006). These generally are summed or

combined in some other manner, in order to provide a single score for analysis (van Ginkel

et al., 2015). Missing responses for individual measurement items impair the calculation

of the summary score, and therefore individuals who fail to respond to some of the items

are usually treated as completely missing (van Ginkel et al., 2015). Although it is common

for researchers to replace missing score items by the mean of the remaining items for an

individual (or a variants on this method; van Ginkel et al., 2015), MI is a more suitable

approach (Eekhout et al., 2014; Gottschall et al., 2012; Shrive, 2006).

There are two clear options for imputing these types of measures: either imputing the

final composite score or imputing each item individually and combining to get the final

score. Imputing the items themselves allows for available information from partially-observed

measures to be used both in the calculation of the composite score and in the imputation

of any missing items. Therefore, compared to imputing the final composite measure, the

“impute by item” approach can improve e�ciency, and could also reduce bias if the partially-
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observed items help render the data MAR (Eekhout et al., 2014; Gottschall et al., 2012).

The “impute by item” approach can be uncongenial to the substantive model when it is based

on a composite measure that is a non-linear combination of its individual items. Consider for

example, passive imputation of BMI, accomplished by imputing height and weight variables

then calculating BMI from these imputed values (Morris et al., 2014). Since BMI is not a

linear function of height and weight, bias may be introduced when BMI is passively calculated

from imputations of height and weight, instead of being actively imputed. However, if log

BMI is of interest, then it may be passively calculated from imputations of log height and

log weight since the relationship between these variables is linear on the log scale (Morris et

al., 2014).

Despite recommendations for the “impute by item” approach, this strategy can inevitably

complicate the imputation model. Multi-item measures are often comprised of ordinal Likert-

type scales which necessitate appropriate categorical variable considerations. Various meth-

ods such as FCS imputation, normal distribution truncation, ad hoc rounding, and transfor-

mations have been attempted during the imputation of Likert-type variables (Jia & Enders,

2015; Rodwell et al., 2014; Lee et al., 2012). It has generally been found, that the most

accurate imputations and most suitable maintenance of parameter estimates are achieved by

imputation under a normal model without any transformation or truncation (Jia & Enders,

2015; Rodwell et al., 2014; von Hippel, 2013). The inferior performance of the FCS approach

for Likert type items may be due to the sensitivity of categorical regression models to sparse-

ness in ordinal data (Jia & Enders, 2015). Furthermore, imputing the Likert-type items with

a set of polytomous regression models which are then summed together may perform well

at maintaining the marginal distribution of the individual items, but may perform poorly

at maintaining a particular linear relationship involving the composite score. As before,

non-parametric imputation methods o↵er an alternative to the complex modelling required
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during parametric imputation of each item of a multi-item measure (Liao et al., 2014; Shah

et al., 2014; Carpita & Manisera, 2011; Jonsson & Wohlin, 2004).

The challenges surrounding fitting a model with each individual measurement item can be

avoided in parametric MI if the composite score of interest is imputed directly. A naive

application of this strategy will results in a loss of information and a corresponding loss of

e�ciency since it fails to exploit the observed items in partially-observed scores (Gottschall

et al., 2012; Eekhout et al., 2014). A potential way to regain the information lost from this

approach is through the use of rejection sampling. Rejection sampling consists of repeatedly

drawing potential values for imputation until a particular criteria or boundary is satisfied

(Carpenter & Kenward, 2012). Therefore, imputed values which are not compatible with

the observed items for a partially-observed individual can be rejected and resampled. That

is, imputations for the composite scores are actively drawn and any imputed values that are

impossibly large or small given the partially-observed data are rejected. More details about

this approach are given by Carpenter and Kenward (2012, pg. 143 & 201).

4.2.3 Survey Weighting

An imputation model which ignores sampling weights will be uncongenial to a weighted

substantive model and may lead to biased results (Andrige & Little, 2009; Carpenter &

Kenward, 2012; Kim et al., 2006; Seaman et al., 2012). Ideally, imputation would proceed

separately in each strata defined by the weights, ensuring that the weights would no longer

be informative in the imputation model. However, this would require specification of many

di↵erent imputation models in strata with potentially small sample sizes. Although seem-

ingly a reasonable alternative, simply weighting the imputation model is not su�cient to

eliminate potential biases if the weights are informative and are related to the missing data

(Kim et al., 2006; Carpenter & Kenward, 2012). Instead, relationships in the imputation
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model should be allowed to di↵er within strata defined by the weights.

Building on this notion, Seaman et al., (2012) note that in order for MI estimates to be

consistent in the presence of sampling weights, the imputation model should include the

weights as covariates and be correctly specified. This implies that is it necessary to include

the sampling weights in the imputation model, along with all relevant interactions with the

sampling weights. This can quickly lead to the inclusion of a large number of variables

and interactions, increasing the risk of near-perfect prediction and identifiability problems

(Carpenter & Kenward, 2012; Seaman et al., 2012). Therefore, a compromise is necessary

between the including all possible design information in the imputation model and fitting a

robust model with a more reasonable amount of key design variables (Carpenter & Kenward,

2012; Seaman et al., 2012).

An approach that aims to resolve the issues of complex model specification in the presence

of weights, is based on the weight smoothing methods utilized by Elliott and Little (2000).

During analysis of complete data, large weight ranges can result in high variance estimates.

As a resolution, Elliott and Little (2000) use multi-level models in which strata formed based

on sampling weights are treated as level-two units. Carpenter & Kenward (2012) propose

extending this approach for MI, by allowing strata based on sampling weights to define level-

two units in a multi-level imputation model. Although their preliminary research shows good

performance of this method, there is no clear way to implement it when it is also desired

to use a multi-level imputation model to account for clustered data (a method which is

discussed in more detail in Section 4.2.4).

Several methods of incorporating sampling weights during implicit (non-parametric) impu-

tation have been considered. For example, sampling weights may be used to modify the

probabilities of donor selection, or to place a restriction on the number of times a respon-

dent can act as a donor (Andrige, 2009; Andrige & Little, 2010). However, analogously to
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weighting an explicit imputation model, neither of these approaches are ideal since each will

fail to eliminate bias if the weights are informative and response probability is not constant

within an adjustment cell (Andrige, 2009; Andrige & Little, 2010). Since the goal of implicit

imputation methods is to create imputation cells which are homogeneous with respect to

the outcome and probability of response, a more suitable approach is to use the sampling

weights (or su�cient design variables) along with other auxiliary variables in formation of

the donor pools (Andrige, 2009; Andrige & Little, 2010).

4.2.4 Clustered Data

The higher-level structure of clustered data should be accounted for during imputation in

order to ensure congeniality. Ideally, MI would proceed independently within each cluster

in order to avoid the need to capture the complex data structure in the imputation model

(Graham, 2009). However, this approach is usually not feasible due to small cluster sizes,

and involves the added challenges of fitting a separate imputation model for each cluster.

From a theoretical standpoint, using a multi-level imputation model is an ideal approach

to ensure congeniality (Carpenter & Kenward, 2012; Drechsler, 2015). However, researchers

often ignore the clustered structure entirely during imputation, or attempt to account for it

with the inclusion of fixed parameters for cluster status indicators in the imputation model

(Drechsler, 2015). Although these methods are less computationally intensive and can be

readily implemented in standard software packages, the consequences of these uncongenial

approaches can be challenging to predict. (Andridge, 2011; Carpenter & Kenward, 2012;

Diaz-Ordaz et al., 2014; Dong, 2014; Drechsler, 2015; Reiter et al., 2006; Taljaard et al.,

2008).

First, consider disregarding the clustered structure entirely by imputing under a single-

level model (without cluster indicators as covariates). The imputed values will not reflect
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the homogeneity within clusters, and will therefore have an inappropriate variance structure.

Cluster specific imputed values will be biased towards the grand overall mean leading to over-

estimation of the variability attributable to within-cluster relationships and underestimation

the variability attributable to between-cluster relationships. This results in underestimated

variance of random components and the related measure, ICC (Andridge, 2011; Diaz-Ordaz

et al., 2014; Drechsler, 2015; Reiter et al., 2006; Taljaard et al., 2008; Van Buuren, 2011).

The inappropriate variance structure of imputed values resulting from this approach also

manifests in biased estimators of fixed parameter variances, the direction of which depends

on the extent to which the estimator is based on within-cluster or between-cluster e↵ects

(Carpenter & Kenward, 2012). Variances for relationships which largely occur between clus-

ters will be underestimated while variances for relationships which occur primarily within

clusters will tend to be overestimated (Carpenter & Kenward 2012; Reiter et al., 2006).

Finally, in the case of unbalanced cluster sizes, use of a single-level imputation model in-

troduces similar problems as the use of a single-level model for analysis with unbalanced

clusters: fixed parameter estimates following imputation may be unnecessarily skewed to-

wards the relationships seen in the largest clusters (Carpenter & Kenward, 2012; Gelman &

Hill, 2006).

Including fixed parameters for cluster indicators variables in the imputation model may

improve on disregarding the clustered structure entirely by allowing for estimation of clus-

ter specific means. However, it remains uncongenial to a multi-level analysis model as it

represents the limiting case where ICC tends to 1 (Andridge, 2011; Drechsler, 2015; Van Bu-

uren, 2011). Therefore, this approach biases imputed values towards cluster specific means,

thereby inflating the di↵erences between clusters leading to overestimated variance of random

components and overestimated ICCs (Andrige, 2011; Drechsler, 2015; Van Buuren, 2011).

Likewise, fixed parameters and their variances may be biased in an opposing fashion to that
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described above during imputation under a single-level model without cluster indicators as

covariates.

To correctly account for clustered data, a multi-level imputation model should be used (An-

dridge, 2011; Diaz-Ordaz et al., 2014; Drechsler, 2015; Reiter et al., 2006; Taljaard et al.,

2008; Van Buuren, 2011). With the joint modelling approach, parameters of the imputa-

tion model can be generated with a MCMC algorithm as described earlier with an additional

step to draw random e↵ects at each iteration (Schafer, 2001; Schafer & Yucel, 2002). Studies

implementing multi-level MI with the joint normal modelling approach have shown suitable

maintenance of ICC values and nominal confidence interval coverage of parameter and vari-

ance estimates (Andridge, 2011; Dong 2014; Mistler 2015; Zhao & Yucel, 2009).

The FCS approach has a natural extension to multi-level imputation, where it involves fitting

a separate conditional multi-level model for each incomplete variable. For example, multi-

level binary variables may be imputed through specification of conditional logistic multi-level

models (Yucel et al., 2006; Zhao, & Yucel, 2009). Simulation studies comparing the FCS and

joint modelling approaches during multi-level imputation, have shown generally equivalent

performance of the two methods (Dong, 2014; Mistler, 2015; Zhao & Yucel, 2009). Currently,

implementation of multi-level FCS imputation in publicly available software is limited to

conditional specification of linear models.

A potential disadvantage to the use of multi-level imputation models is the necessity of

making more extensive modelling assumptions compared to single-level models. Specifically,

the assumption of normally distributed random e↵ects is required. This may be challenging

to justify in some cases, but both the joint modelling and the FCS approach have been shown

to be quite robust to violations of this assumption (Dong, 2014; Yucel and Demirtas, 2010).
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4.3 Summary

Multiple imputation has become a very popular approach for dealing with item non-response

in survey settings (Little & Rubin, 2014; Reiter et al., 2007; Schafer & Graham, 2002; White,

Royston, & Wood, 2011). It is clear that the model used for imputation must be congenial

to the model used for analysis, which becomes more challenging in complex survey settings

(Andridge, 2011; Carpenter & Kenward, 2012; Kim et al., 2006; Meng, 1994; Reiter et

al., 2006; Seaman et al., 2012). Inclusion of survey weights may be necessary, which can

complicate model fitting (Kim et al., 2006; Seaman et al., 2012). Multi-level imputation

models are necessary to ensure congeniality in the presence of clustered data, but these

can be computationally intensive and only a limited number of software packages currently

implement such methods (Andridge, 2011; Drechsler, 2015; Reiter et al., 2006). Finally, the

large amount of categorical data paired with multi-item measures further complicate these

procedures (Bernaards et al., 2006; Eekhout et al, 2014; Gottschall et al., 2012; Lee & Carlin,

2010; Yucel, 2011). The extent to which disregarding these aspects of complex surveys during

MI may a↵ect analysis results in real-data settings is not clear. The remainder of this report

is dedicated to investigating this problem through comparative application of MI methods

within the HBSC.

5 Application: Multiple Imputation within the Health Behaviour

in School-aged Children Study

Most variables within the HBSC data set have some proportion of missing data, and for

analyses which involve multiple variables, this can add up to a considerable portion of data

being ignored during a complete-case analysis. Therefore, missing data within the HBSC

must be handled appropriately, and MI is a highly advantageous solution (Little & Rubin,
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2014; Reiter & Raghunathan, 2007; Schafer & Graham, 2002; White, Royston, & Wood,

2011). Three research questions of interest within the HBSC were identified as being of

special interest. Missingness patterns the variables involved in the selected research questions

(outlined in the following section) are described below, and can be seen in Table 1.

5.1 Research Questions

Three substantive research questions of interest within the HBSC were chosen to illustrate

the potential e↵ects of di↵erent missing data methodology. Two of these research questions

related to the association between hunger during childhood and specific health outcomes,

while the third examined the relationship between the health outcomes themselves.

Hunger during childhood is a prognostic factor for many negative health outcomes includ-

ing obesity, lower health related quality of life, poorer emotional health, and many physical

symptoms (Nackers & Appelhan 2013; Niclasen et al., 2013). While several studies have

examined the various health consequences of hunger in adults, only recently was this topic

investigated within the Canadian HBSC, providing one of the only large-scale studies on

the topic in adolescents (Pickett, Michaelson, & Davison, 2015). The HBSC study collects

data on self-reported hunger due to inadequate food supply, and many health outcomes

both psychological and physical in nature. The study by Pickett, Michaelson, and Davidson

(2015) found relationships between this type of hunger and a number of negative emotional,

physical, and social outcomes. These findings motivated the further examination of these

same topics during the present investigation. The health outcomes selected for the present

investigation were chosen, in part, based on the occurrence of missing data in the corre-

sponding variables. These included measures of psychosomatic symptoms and body mass

index (BMI), which acts as a proxy measure of adiposity. Investigation of the relationships

between BMI and psychological health outcomes in adolescent populations at the scale of
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the HBSC is limited, further motivating examination of the relationship between these two

selected health outcomes (Erickson et al., 2000; Ford et al., 2001).

In summary, the following research questions were investigated while employing a variety of

MI methods to treat the missing data:

1. Analysis one: How is hunger due to inadequate food supply related to the outcome

of psychosomatic symptoms?

2. Analysis two: How is hunger due to inadequate food supply related to the outcome

of adiposity?

3. Analysis three: How is adiposity related to the outcome of psychosomatic symptoms?

5.2 Variables and Missingness

Hunger

The HBSC measures students’ perception of hunger using the question: “Some young peo-

ple go to school or bed hungry because there is not enough food a home. How often does

this happen to you?” to which students may respond with one of four options including:

“always”, “often”, “sometimes” and “never”. This measure has been used as an indica-

tor of child hunger, and as a proxy for socioeconomic status and food availability (Pickett,

Michaelson & Davison, 2015). As suggested by previous research involving this hunger vari-

able, response categories “always” and “often” were grouped together to form one category

called “frequent”, since there is a small number of respondents in each of these categories

(Pickett, Michaelson, & Davidson, 2015). This hunger variable has very few missing values,

only approximately 0.8% (as reported in Table 1).
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Table 1: Item non-response in variables that are part of substantive analyses

Variable % Missing

Hunger 0.8
Psychosomatic symptomsa 8.4

Headache 2.8
Stomache Ache 3.1
Backache 3.9
Feeling Low (Depressed) 3.8
Irritability 3.6
Nervousness 3.7
Di�culty Sleeping 3.3
Diziness 2.9

BMI 23.0
Height 16.5
Weight 15.7
Family a✏uence 9.0
Family structure 3.7
Immigration status 1.1
Age 0.9

Totalb for Analysis 1 : Association between
hunger and psychosomatic complaints 17.7

Total for Analysis 2 : Association between
hunger and adiposity 29.6

Total for Analysis 3 : Association between
adiposity and psychosomatic complaints 33.3

aPercentage of individuals who failed to respond to at least one
of the 8 psychosomatic symptoms items

bTotal percentages for each analysis indicate the percent of
individuals with at least one missing value for a required variable;
this is the percent of individuals which were removed from the
respective complete-case analysis.

Psychosomatic Symptoms

The HBSC asks students to report the frequency (on a 5 point Likert-like scale ranging

from “about every day” to “never”) of experiencing 8 psychosomatic symptoms: headache,

stomach ache, backache, feeling low (depressed), irritability, nervousness, di�culty sleeping,

and dizziness. The 8 items are typically totaled to form a composite score with strong
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psychometric properties (Hetland et al., 2002). This score was then dichotomized to form

an outcome variable which indicated either frequent (on average, daily or weekly), or not

frequent reporting of symptoms. Approximately 8.4% of survey participants failed to respond

to at least one psychosomatic symptoms (PS) score item, so PS score was missing 8.4% of

the time; non-response for the 8 individual PS score items ranged from 2.7% to 3.9% (as

reported in Table 1).

Adiposity

Self-reported height and weight is collected in the HBSC, and BMI was calculated from

these values. Although BMI measured in this fashion is subject to measurement error, it

considered an acceptable measure of adiposity (Booth et al., 2000). Students were classified

as “normal” “overweight” or “obese” based on sex and age-specific percentiles established

by the WHO. For the analysis in which adiposity was the outcome of interest, “overweight”

and “obese” individuals were grouped together to form a single category (and therefore a

dichotomous outcome). Approximately 22.6% of students reported neither their height nor

weight, while 16.5% reported only their height and 15.7% reported only their weight. In

addition, approximately 0.45% of students reported heights and weights that combined to

give extreme BMI outliers (outside of a realistic range of 11 to 37), so these unrealistic values

were deleted. Therefore, BMI was unknown for approximately 23.0% of the sample.

Covariates

In accordance with past research, a standard set of individual-level confounders was con-

trolled for during these analyses which included, family a✏uence (as a proxy measure for

socioeconomic status), family structure, immigration status, age, and grade level (Pickett,

Michaelson & Davison, 2015).

Family a✏uence is a validated measure of socioeconomic status (Currie et al., 1992). It was
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measured by asking students four questions about the material conditions of their household.

These included whether students had their own bedroom, family vehicle ownership, family

computer ownership, and family holidays. Following past research practices, responses from

these four items were then totaled to create a nine point Family A✏uence Scale (FAS)

which was categorized into low, medium, and high family a✏uence (Pickett, Michaelson,

& Davidson, 2015). Approximately 9.0% of the survey participants failed to respond to at

least one family a✏uence item, so total FAS was missing 9.0% of the time. The four family

a✏uence items each had between 7.5% and 7.9% non-response.

Following past research, family structure was based on the number and type of adults living

in the participant’s primary home (Pickett, Michaelson, & Davidson, 2015). Constructed

categories included: both mother and father at home, one of mother or father at home, and

“other” family structures. Family structure was missing for the 3.7% of individuals who did

not provide any information regarding the caregivers living in their primary home.

Immigration status of participants was determined by the length of time they had been

in Canada as collected by the question, “How many years have you lived in Canada?” (to

which 1.1% individuals failed to respond). Because of the small numbers in certain groups,

the responses were collapsed to form three categories: born in Canada, immigrated recently

(within 1-5 years), and immigrated not recently (greater than 5 years ago).

Age was calculated from participant’s birthdate, which 0.9% of students failed to report.

There are no missing values for grade level since this information is known during sampling.

Gender (missing 0.12% of the time) was not controlled for as a confounder, but involved in

the classification of participants into BMI categories (see above) and is considered relevant

as a descriptive covariate.

Distributions of the three main variables of interest in the present investigation (hunger,
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psychosomatic symptoms, and adiposity) by the covariates described in this section can be

seen in Table 2. Some of the trends that appear to exist within in Table 2 highlight the

importance of missing data treatment. For example, upon first examination it may appear as

though younger grades have higher percentages of obese students. In actuality, this pattern

is likely attributable to the higher occurrence of missing BMI values in these groups.

5.3 Complete-case Analysis

Performing a complete-case analysis (CCA) prior to implementing MI is necessary to fit

and evaluate the substantive models of interest using the complete data. The information

gathered through this process is used during development of a congenial imputation model.

Methods

Multi-level logistic regression was used to model the dichotomous health outcomes described

in Section 5.2 while accounting for the clustered nature of the data. Since there was often

only one class sampled from each school, the di↵erences between classes are likely largely

indistinguishable from di↵erences between schools (Nezlek, 2011). As such, the multi-level

model involved two levels, where students are level-one and schools are level-two. Based on

model fit, random intercept models were considered most suitable. The set of confounders

described above were controlled for during each analysis, which included family a✏uence,

family structure, immigration status, age, and grade. The total percentages of missing values

for each analysis can be seen in Table 1; these percentages of the data are ignored during

this CCA.
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Table 2: Key variables and missing values as distributed by relevant covariates

Subgroup Sample (n)
% Who report going to school/bed hungry
because there is not enough food at home

% In each of the age-sex specific World
Health Organization BMI groups

% Experiencing frequent
psychosomatic symptoms

Never Sometimes Frequent Missing Normal Overweight Obese Missing No Yes Missing

Total sample 26078 73.47 21.73 4.01 0.79 57.55 12.24 7.217 23.00 77.33 14.28 8.39

By gender

Boys 12878 72.07 22.68 4.33 0.92 54.54 14.57 9.28 21.61 81.55 9.58 8.87

Girls 13169 74.86 20.81 3.71 0.62 60.60 9.98 5.19 24.23 73.26 18.89 7.85

Missing 31 64.51 19.36 0 16.13 16.13 6.45 0 77.42 54.84 6.45 38.71

By grade level

Grade 6 5165 68.25 26.31 4.28 1.16 44.92 10.67 8.03 36.38 77.46 10.40 12.14

Grade 7 5205 72.83 22.96 3.38 0.83 54.93 11.49 6.88 26.71 78.83 11.24 9.93

Grade 8 5266 75.47 19.94 3.84 0.75 58.93 12.34 7.24 21.50 78.73 13.58 7.69

Grade 9 5395 75.89 19.59 3.84 0.68 62.21 13.42 7.06 17.31 76.03 17.59 6.38

Grade 10 5047 74.80 19.93 4.78 0.50 66.79 13.26 6.82 13.14 75.59 18.57 5.85

By immigration status

Born in Canada 18326 74.81 20.75 3.79 0.64 58.70 12.60 7.32 21.38 77.40 14.89 7.71

Immigrant: recent 2069 71.73 23.05 4.40 0.82 56.16 9.42 4.88 29.53 78.20 13.05 8.75

Immigrant: not recent 5407 69.84 24.63 4.59 0.94 55.28 12.26 7.86 24.60 77.14 12.87 9.99

Missing 276 68.48 19.93 4.71 6.88 36.23 9.42 3.99 50.36 69.93 10.51 19.57

By family structure

Both parents 16504 76.46 19.82 3.25 0.47 60.87 11.77 7.05 20.30 81.27 12.24 6.50

One parent 7148 70.05 24.51 4.94 0.50 56.56 13.81 7.79 21.83 74.16 18.79 7.05

Other 1470 65.78 26.05 6.73 1.43 44.63 12.65 7.69 35.03 68.30 19.05 12.65

Missing 956 59.21 27.30 6.07 7.43 27.51 7.95 4.71 59.83 44.07 8.37 44.56

By family a✏uence

High 15704 77.45 19.13 3.00 0.42 62.11 12.46 6.99 18.44 80.30 13.48 6.22

Medium 6221 70.82 23.74 4.79 0.64 55.39 12.54 7.88 24.19 77.29 15.56 7.15

Low 1797 60.04 31.61 7.35 1.00 46.47 12.35 8.51 32.67 71.79 19.14 9.07

Missing 2356 64.13 26.23 6.20 3.44 41.4 9.89 5.86 42.87 61.93 12.48 25.59

By age

9-12 years 8457 70.62 24.64 3.87 0.88 49.56 11.08 7.70 31.67 78.51 10.49 11.00

13-15 years 10452 75.35 20.33 3.65 0.67 59.92 12.75 7.31 20.02 77.89 14.72 7.39

15+ years 6944 74.42 20.23 4.74 0.60 65.60 13.28 6.68 14.44 75.36 18.33 6.31

Missing 225 63.56 23.56 4.44 8.44 0 0 0 100 68.0 10.67 21.33
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The post-stratification weights available in the HBSC data set are overall unconditional

weights, not appropriate for use in the MPML method for weighted multi-level models (As-

parouhov, 2006; Rabe-Hesketh and Skrondal, 2006). Furthermore, there is no clear way to

suitably approximate the weights necessary for use in multi-level analyses from the weights

provided in the data set (see Section 3.4; Rabe-Hesketh & Skrondal, 2006; Stapleton 2012).

Therefore, the weights were left out of analyses and a fully model-based approach was used.

Dummy variables for grade and province strata status were included as covariates to account

for the disproportionate sampling between provinces (Little, 1993,2004).

To briefly evaluate this decision, hybrid (weighted) multi-level regressions were attempted

(with the MPML method). These were performed with weights included either in the form

they are provided in the data set (standardized to sum to the total sample size), or approx-

imated with a naive method (Zhou, 2014). In order to implement Zhou’s naive approxima-

tion, the cluster-level weights were approximated as the average of the within cluster weights

ŵ

j

=
P

i

w

ij

/n

j

, (where n
j

is the sample size of cluster j) and the within-cluster conditional

weights were scaled to sum to the cluster sample size ŵ

i|j = w

ij

/ŵ

j

. Although there is

no evidence that this approximation should perform adequately, it represents a simple and

seemingly reasonable approximation that can be implemented with the information available.

As discussed earlier, the inclusion of the weights when implementing a model-based strategy

should be based on the informativeness of the weights (Asparouhov, 2006). Therefore, these

weighted analyses also served to o↵er guidance in this respect. Since the weighted analyses

do not include fixed parameters for grade province strata (as with as the fully model-based

approach) estimates of random intercept variance won’t be directly comparable. Therefore,

the fully model-based analysis was repeated failing to include the grade and province strata

dummy variables, in order to examine the e↵ect the weighted approaches have on estimated

random intercept variance.
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PROC GLIMMIX in SAS 9.4 was used to fit the logistic multi-level models with the inclu-

sion of random intercepts for each school. Fixed parameter variance estimates during the

weighted analyses were computed using empirical variance estimators. This specification of

the “empirical” computation option is necessary in SAS 9.4 to ensure weights are treated as

sampling weights, rather than precision weights, which would lead to a completely di↵erent

variance estimator.

Results

Results (odds ratios and 95% CIs) from the complete-case analyses are presented in the first

columns of Table 3,4, and 5. After controlling for confounders, hunger due to inadequate

food supply is significantly associated with the outcome of psychosomatic symptoms: as the

frequency of experiencing hunger increases, so do the odds of experiencing psychosomatic

symptoms (see Table 3). The results of the analysis examining the association between

hunger and the outcome adiposity are not as clear (see Table 4). The intermediate category of

hunger experience (“sometimes”) is significantly associated with increased odds of adiposity,

however, the experience of frequent hunger does not show the same association. Finally,

the analysis examining the association between adiposity and the outcome of psychosomatic

symptoms shows a significant relationship between increasing adiposity and increased odds

of experiencing psychosomatic symptoms (see Table 5).

The results of the explorative analyses which used the available post-stratification weights

can be seen in the remaining columns of Table 3, 4, and 5. There are only slight di↵erences

between the “model-based” analyses and both “hybrid” methods in terms of fixed parameter

estimates (relative to the increased width of confidence intervals), indicating that the weights

are not informative past the extent of what is already controlled for in the model (compare

column 1 to columns 3-4 of Tables 3-5). Furthermore, including the inappropriate weights

did not appear to have notable repercussions.
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Notably, all four implemented methods generated di↵erent random intercept variance es-

timates. Inclusion of province and grade strata indicators resulted in much lower random

intercept variance estimates since these covariates accounted for a portion of the variability

that would otherwise be explained at the school-level. Therefore, as expected, it is more

suitable to compare the random intercept variance estimates from the “hybrid” methods to

the model-based method which failed to include grade and strata indicators. It can be seen

in Tables 3-5 that application of the unconditional single-level weights appears to inflate

random intercept variance estimates, as opposed to the approximated multi-level weights in

which variance estimates more closely agree with the un-weighted approach. This finding

is consistent with the warnings of Rabe-Hesketh and Skrondal (2006) discussed in Section

3.4: use of inappropriate weights can result in biased estimators for random intercept vari-

ance. Moreover, fixed parameter estimates following use of the unconditional single-level

weights tend to be slightly higher than use of the approximated multi-level weights. That

is, the upward bias in random intercept variance that appeared to occur following use of

the single-level weights seemed to propagate to fixed parameter estimates, likely due to

the ties between fixed parameter estimates and random components variances in logistic

multi-level models (as discussed in Section 3.3; Breslow & Clayton, 1993; Demidenko, 2013;

Rabe-Hesketh & Skrondal, 2001, 2006). Therefore, the weight approximation method may

improve upon the un-approximated single-level weights, but remains unjustified based on

current literature (Asparouhov, 2006; Rabe-Hesketh & Skrondal, 2006; Stapleton, 2012).

Overall, the explorative analyses involving the post-stratification weights found them to be

largely uninformative and, further, capable of biasing random intercept variance estimation..
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Table 3: Odds ratios and 95% confidence intervals (CIs) from complete-case analysis 1: How
is hunger related to the outcome psychosomatic complaints?

Variable Model-baseda Model-based
ignoring stratab

Hybrid with
single-level weightsc

Hybrid with

multi-level weightsd

Hunger

Often 5.062
(4.346, 5.897)

5.219
(4.48, 6.076)

4.873
(3.963, 5.991)

4.826
(3.928, 5.930)

Sometimes 1.830
(1.674, 2.001)

1.792
(1.640, 1.959)

1.825
(1.622, 2.054)

1.814
(1.613, 2.040)

Never ref ref ref ref

Random intercept
variance (SE)

0.037
(0.0122)

0.064
(0.016)

0.123
(0.022)

0.077
(0.021)

aIncluded province and grade stratum indicators
bFailed to included province and grade stratum indicators
cUsed overall unconditional single-level weights are they are available in the data set
dUsed naively approximated multi-level weights

Table 4: Odds ratios and 95% confidence intervals (CIs) from complete-case analysis 2: How
is hunger related to the outcome of adiposity?

Variable Model-baseda Model-based
ignoring stratab

Hybrid with
single-level weightsc

Hybrid with

multi-level weightsd

Hunger

Often 1.155
(0.967, 1.380)

1.157
(0.969, 1.382)

1.192
(0.967, 1.486)

1.186
(0.955, 1.476)

Sometimes 1.179
(1.083, 1.283)

1.181
(1.086, 1.285)

1.249
(1.101, 1.417)

1.242
(1.093, 1.411)

Never ref ref ref ref

Random intercept
variance (SE)

0.065
(0.015)

0.103
(0.017)

0.123
(0.019)

0.091
(0.019)

aIncluded province and grade stratum indicators
bFailed to included province and grade stratum indicators
cUsed overall unconditional single-level weights are they are available in the data set
dUsed naively approximated multi-level weights
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Table 5: Odds ratios and 95% confidence intervals (CIs) from complete-case analysis 3: How
is adiposity related to the outcome psychosomatic complaints?

Variable Model-baseda Model-based
ignoring stratab

Hybrid with
single-level weightsc

Hybrid with

multi-level weightsd

Adiposity

Overweight 1.391
(1.212, 1.596)

1.392
(1.214, 1.595) )

1.403
(1.157, 1.702)

1.393
(1.151, 1.685)

Obese 1.247
(1.114, 1.395)

1.240
(1.115, 1.379)

1.334
(1.139, 1.562)

1.333
(1.138, 1.563)

Normal ref ref ref ref

Random intercept
variance(SE)

0.032
(0.015)

0.054
(0.015)

0.147
(0.031)

0.073
(0.024)

aIncluded province and grade stratum indicators
bFailed to included province and grade stratum indicators
cUsed overall unconditional single-level weights are they are available in the data set
dUsed naively approximated multi-level weights

In brief, the substantive analyses of interest in the present investigation are based on multi-

level logistic regression models with the inclusion of random intercepts for each school. There

were significant findings across all three substantive analyses in the complete-case setting.

The next step taken was to investigate the changes in these findings following application of

MI.

5.4 Multiple Imputation Methods

The results from the above CCA may su↵er from bias and a loss of e�ciency due to the

deletion of individuals with incomplete information (Little & Rubin, 2014). Therefore, e↵orts

were made to remedy these problems by employing a set of MI procedures. MI methods were

selected to represent a progressing range of complexity in order to achieve the goals of the

present investigation as stated in Section 1. Specifically, the imputation methods di↵ered

according to three main characteristics:
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i. The extent to which clustered structure of the data was incorporated;

ii. The methods used to impute the composite psychosomatic symptoms (PS) score;

and

iii. The parametric modelling assumptions involved.

For the parametric approaches, the imputation models progressively incorporated the clus-

tered structure of the data to ensure congeniality. Since the substantive analyses involve

multi-level logistic models with random intercepts, truly congenial MI procedures must

be complex enough to also incorporate this multi-level structure in the imputation model.

Therefore, to vary complexity three imputation models were employed including: single-level

imputation over the whole country, single-level imputation within province, and multi-level

imputation (the most congenial approach). For each of these methods, three di↵erent ap-

proaches were used to impute the composite PS score: imputing each of the 8 individual

items, imputing the total composite score with the use of rejection sampling, or imputing

the total composite score without rejection sampling. A non-parametric imputation methods

was performed in order avoid the restrictions of the strong parametric assumptions in the

other models. This involved a k nearest neighbour (KNN) approach based on the distance

metric Gower’s distance (Gower, 1971). See Table 6 for a summary of the implemented

methods. For simplicity, the following sections discuss details of the MI methods according

to each of the key methodological characteristics.
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Table 6: Summary of multiple imputation methods

Method Description

SLI: Single-level imputation using latent
normal models for categorical variables
and imputation of 8 PS items

The method does not account for clustering within schools. Here
any missing PS score items are imputed individually and the total
score is calculated by summing over these (potentially imputed)
items. Latent normal models are used for the imputation of
categorical variables.

SLI-P: Single-level imputation within
provinces using latent normal models for
categorical variables and imputation of 8
PS items

The method performs imputation separately within each province.
Here any missing PS score items are imputed individually and the
total score is calculated by summing over these (potentially imputed)
items. Latent normal models are used for the imputation of categorical
variables

MLI: Multi-level imputation using latent
normal models for categorical variables
and imputation of 8 PS items

This method uses a multi-level imputation models which includes ran-
dom intercepts in order to appropriately account for the clustered
structure of the data. Here any missing PS score items are imputed
individually and the total score is calculated by summing over these
(potentially imputed) items. Latent normal models are used for the
imputation of categorical variables

SLI-C: Single-level imputation using mul-
tinomial logistic models for cateogorical
variables and imputation of 8 PS items

This method does not account for clustering within schools. Here
any missing PS score items are imputed individually and the total
score is calculated by summing over these (potentially imputed)
items. Multinomial logistic regression models are used for the imput-
ation of categorical variables

SLI-PC: Single-level imputation within
provinces using multinomial logistic models
for categorical variables and imputation of
of 8 PS items

This method performs imputation separately within each province.
Here any missing PS score items are imputed individually and the
total score is calculated by summing over these (potentially imputed)
items. Multinomial logistic regression models are used for the imput-
ation of categorical variables

TSLI: Single-level imputation using latent
normal models for categorical variables
and imputation of total PS score with
rejection sampling

This method does not account for clustering within schools. Here
the total PS score is imputed (rather than individual items) with
the use of rejection sampling. Latent normal models are used for the
imputation of categorical variables.

TSLI-P: Single-level imputation within
provinces using latent normal models for
categorical variables and imputation of total
PS score with rejection sampling

This method performs imputation separately within each province.
Here the total PS score is imputed (rather than individual items) with
the use of rejection sampling. Latent normal models are used for the
imputation of categorical variables

TMLI: Multi-level imputation using latent
normal models for categorical variables and
imputation of total PS score with rejection
sampling

This method uses multi-level imputation models which include ran-
dom intercepts in order to appropriately account for the clustered
structure of the data. Here the total PS score is imputed (rather

than individual items) with the use of rejection sampling. Latent
normal models are used for the imputation of categorical variables

TMLI-NR: Multi-level imputation using
latent normal models for categorical vari-
ables and imputation of total PS score
without rejection sampling

This method uses multi-level imputation models which include ran-
dom intercepts in order to appropriately account for the clustered
structure of the data. Here the total PS score is imputed (rather

than individual items) but no rejection sampling is implemented. Lat-
ent normal models are used for the imputation of categorical variables

KNN: k nearest neighbour imputation This method utilizes a non-parametric approach which identifies k

nearest neighbours based on a distance function, and randomly
selects one from which to impute missing values of the recipient.
Donors are restricted to belong to the same province and grade.
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Parametric versus Non-parametric:

Although the underlying theory of MI is based on parametric modelling, non-parametric (im-

plicit) MI methods have important benefits since they do not require the same distributional

assumptions and are less sensitive to model misspecification. Therefore, both parametric

and non-parametric MI methods were implemented in the present investigation.

Non-parametric MI could be considered advantageous in the present setting since a large

number of mixed-type (categorical and continuous) substantive and auxiliary variables were

involved in the imputation, and higher-order and non-linear relationships were not known a

priori (Carpita & Manisera, 2011; Liao et al., 2014; Shah et al., 2014).

Implementing non-parametric MI allowed the restrictions of parametric assumptions to be

avoided. The non-parametric method employed was a k nearest neighbour procedure with

an Approximate Bayesian Bootstrap (as implemented by Koller-Meinfelder, 2009) using a

distance function that allows for continuous and categorical variables (Gower, 1971). Donors

were restricted to those who had observed values for all the missing values of the recipient,

and observed values from selected donor were used to impute the missing values for the

partially-observed individual

Fully conditional specification

Joint-multivariate normal modelling and FCS (as described in Section 4.1) are the dominate

approaches used for parametric MI. Overall, these methods tend to perform equivalently

(Kropko et al., 2013; Lee & Carlin, 2010; van Buuren, 2007), so the FCS approach was

selected due to its flexibility, which allowed for implementation of the rejection sampling

methods (further described below). Due to software limitations, multi-level imputation was

performed with each conditional model specified as a normal linear multi-level regression

(implementation of multi-level FCS in publicly available software is limited to conditional
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specification of linear models). This required the use of the latent normal model approach

for categorical variables (which included the 8 Likert variables of the PS score, family a✏u-

ence, family structure, hunger, immigration status, and some auxiliary variables). That is,

they were imputed with the assumption that they were discretized realizations of some un-

derlying latent normally-distributed continuous variable (following the methods discussed in

Section 4.2.1). For comparability, single-level imputation methods were also performed with

latent normal model approach for categorical variables (note: since this involves specifying

a normal linear regression for each conditional model, these methods are equivalent to the

joint-multivariate normal imputation approach; Hughes et al., 2014). However, to take full

advantage of the flexibility of the FCS approach, single-level imputation methods were also

performed with conditionally specified categorical regression models where appropriate (e.g.

multinomial logistic regression models were used for imputation of the 8 Likert variables of

the PS score, family structure, hunger, and immigration status).

Multi-level versus single-level versus within province imputation

The goals of the present investigation necessitated a range of MI methodological complexity.

The parametric imputation methods were performed using: single-level imputation over the

whole country, single-level imputation within province, and multi-level imputation with the

incorporation of random intercepts for schools. These represent a progression from disre-

garding clustering during imputation, to incorporating clustering in the most theoretically

appropriate (and most congenial) way. As mentioned above, single-level imputation methods

(across the whole country and within province) were performed using both latent normal

models and polytomous/multinomial regression models for categorical variables within the

FCS algorithm.

Non-parametric imputation methods do not o↵er a clear ideal approach to incorporating

the clustered structure of the data. During the non-parametric k nearest neighbour method
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donors were restricted to belong to the same province and grade as the recipient individual

and cluster indicators were a component of distance function calculation.

Imputing the multi-item psychosomatic symptoms score

The parametric MI methods imputed the PS score variable based on either each individual

score item or the total summed measure. When imputing the total PS score, rejection

sampling was implemented to make use of the information available from the partially-

observed individual score items (Carpenter & Kenward, 2012). In order to implement the

rejection sampling, maximum and minimum achievable values were calculated based on

the number of items which were missing. During imputation, any drawn value which fell

outside of these maximum or minimum values was rejected and redrawn until meeting these

requirements. For example, an individual may have responded to 6 of 8 PS items, for which

their responses sum to 25. Since the range of the PS score Likert-type variables is 1 to 5, any

values imputed outside of a range of 27-35 would be deleted and resampled. To examine the

impact of failing to exploit the additional information present in the partially-observed PS

score items, one implemented method imputed the total PS score without rejection sampling

(since this approach was only attempted once, it was performed with multi-level imputation).

The latent normal model approach was used for methods imputing the total PS score; the

main advantage of the conditionally specified categorical regression models was less relevant

when no longer imputing the 8 categorical Likert-type variables. The non-parametric KNN

approach only involved imputation of the 8 individual PS score items; the main advantage

of imputing the total score was not as relevant when the challenges of parametric modelling

were removed.
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Imputation model variables

The first step in developing a congenial imputation model is to include all the variables that

are present in the substantive analysis (Meng, 1994). Since all three substantive models

controlled for the same confounders and otherwise involved three main variables of interest,

imputation models were fit to include all variables required for the three substantive analyses

(listed in Table 1). In this way, it was only necessary to implement each MI method once,

following which, the same imputed data could be utilized for each of the three analyses.

Following the recommendations of Morris et al., (2014) BMI was imputed as log transformed

height and weight variables during parametric MI (as discussed in Section 4.2). As with the

substantive analysis models, fixed parameters were included for grade and province stratum

indicators.

Beyond the variables which make up the substantive analyses, it was necessary to identify a

set of auxiliary predictors for the imputation models (based on the two criteria mentioned in

Section 4.2; Carpenter & Kenward, 2012). Since the HBSC data set involves a large number

of potential auxiliary variables, a candidate set was first ascertained through investigation

of the literature (Berntsson & Gustafsson, 2000; Cohen & Du↵y, 2002; Kalsbeek et al.,

2002; Patrick et al., 2004; Paxton et al., 1991 Poikolainen et al., 2000; Swallen et al., 2005).

This set of potential predictors was then reduced to a parsimonious set through model

selection techniques (forwards and backwards selection into models which already included

the variables necessary for the substantive analysis), trial and error, and common sense.

Since many of the candidate auxiliary variables were also incomplete, variables which had a

large number of simultaneous missing values with the variable to be imputed were considered

unsuitable for use an auxiliary variable (van Buuren, 2012). See Table 7 for a list of the

auxiliary variables selected for each variable in the substantive model requiring imputation.

Although this table displays auxiliary predictors individually for each variable in the
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Table 7: Imputation model auxiliary variables

Imputed variable Auxiliary variables

Hunger Gender
Grade
Ethnicity
Breakfast habits

“How often do you usually have breakfast...”
Self-reported quality of life
Home life dissatisfaction

“There are times I would like to leave home.”

Psychosomatic Symptoms Gender
Grade
Ethnicity
School work

‘̀How pressured do you feel by the schoolwork you have to do?...”
Self-reported health

“Would you say your health is...?”
Experiencing bullying

“How often have you been bullied at school in the past couple of months?...”
Experiencing injury

“During the past 12 months, how many times were you injured and had to be treated
by a doctor or nurse?...”

Self-reported quality of life
Home life dissatisfaction

“There are times I would like to leave home...”
Loneliness

”“ often feel lonely...”
Self-reported wellbeing

“Thinking about the last week...have you felt fit and well...felt sad...felt full of energy...”

Height Gender
Grade
Age
Body Dissatisfaction

“Do you think your body is...?... much too thin...much too fat...”

Weight Gender
Grade
Ethnicity
Self-reported quality of life
Body Dissatisfaction
Dieting
Breakfast Habits
Dietary Habits and unhealthy food consumption
Physical activity

Family structure, family
a✏uence, immigration
status

Grade
Ethnicity
Immigration status
Family a✏uence
Family structure

Age Grade
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substantive analyses, each imputation model included all variables (auxiliary and otherwise).

That is, each incomplete variable was imputed based on all other variables. Although this

is not strictly necessary when implementing the FCS algorithm, it improves the likelihood

that the specified conditional models adhere to an existing joint distribution. As described

in Section 4.1, this is a theoretical concern when employing FCS, and although the practi-

cal importance of this concern appears limited, the more theoretically valid approach was

selected for this application.

Since the FCS algorithm involves fitting univariate imputation models, assessment of impu-

tation model fit was accomplished by fitting each conditional imputation model individually.

Residual diagnostic plots, and the reasonability of parameter estimates were examined.

Details of implementation

Each of the imputation methods was specified to produce 25 imputed data sets, which has

been shown to be an adequate number to remove noise from estimations (Schafer & Graham,

2002). Although arguments have been made for more imputations (Graham, Olchowski, &

Gilreath, 2007), 25 was considered adequate given the computational time required for the

more complex imputation procedures. All imputations were completed using R statistical

software. The k nearest neighbour method was adapted from the methods implemented

in the StatMatch package (D’Orazio, 2011). The mice package (van Buuren & Groothuis-

Oudshoorn, 2011) was used to perform all parametric MI methods (joint modelling and FCS).

The mice software allows for customization of user specified imputation procedures for use in

the FCS algorithm so the rejection sampling procedures could be readily incorporated into

the already existing FCS framework. Multi-level imputation was performed by interfacing

mice with the, PAN package (Schafer, 2012). PAN implements a Gibbs sampler in order to

draw imputed values from a specified joint normal distribution, for which 1000 iterations was

specified (Schafer, 2012). Ten iterations between imputations was specified for FCS algorithm
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(for all parametric MI methods), which is a recommended number to allow imputed values

to be stabilized and independent from each other (Royston & White, 2011). The FCS

algorithm was specified to impute variables in order of increasing proportions of missing

values to improve the speed of convergence (van Burren, 2012). Trace plots of the mean and

variance of imputations for each iteration of the FCS procedure were examined to ensure the

algorithm converged and imputations were independent. Ideally, by the point of imputation

(the last several iterations) these plots should show no distinct trends and each iteration

should be uncorrelated. Examples of such plots can be seen in Figure 1.

Following imputation, data sets were analysed using the GLIMMIX procedure in SAS 9.4

for generalized linear multi-level models, and combined according to Rubin’s rules (Rubin,

1987) with the SAS procedure, MIANALYZE. Density plots (or histograms for categorical

variables) of imputed versus observed values were generated following imputation to assess

the feasibility of imputed values. Several of these plots, based on the first 5 out of m=25

imputation data sets, are presented in Figure 2,3, and 4; the remainder of the plots were

very similar to Figures 2-4 and are therefore not presented.

Figure 1: Example of trace plots used to assess convergence of the FCS algorithm. Each
line represents a separate imputed data set. The mean and standard deviation of imputed
values at each of the 10 iterations are plotted for the log of the weight variable and the total
psychosomatic complaints score variable. Plots are shown from the multi-level imputation
method imputing the Total PS score.
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5.5 Multiple Imputation Results

Table 8, 9, and 10 present the results of the substantive analyses following implementation of

each multiple imputation method (note: results from methods imputing the total composite

PS score are not presented in Table 9 as the PS score was not part of this analysis). Exam-

ination of plots for imputed versus observed values can o↵er some preliminary information

(see Figures 2-4). Figure 2 compares the imputed values to the observed values for height

and weight variables, as well as the subsequently calculated BMI. From Figure 2, it is clear

that imputed values for the height variable systematically deviate from the observed values.

This is expected, as younger individuals more frequently fail to report their height, and the

inclusion of age and grade in the imputation model has accounted for this. Although younger

individuals also tend to more frequently not report their weight, the same systematic di↵er-

ence between imputed and observed values is not seen for this variable. This may reflect the

imputation model generating values for missing weight values that are systematically higher

than the observed values, which is reasonable based on past literature (Cohen & Du↵y,

2002). Finally, the calculated BMI for imputed values show slightly higher proportions of

low-range and high-range BMI values compared to observed values. This may be indicative

of two co-occurring missingness mechanisms: younger (with a lower BMI) individuals and

overweight (as predicted by weight related auxiliary variables) individuals may both have a

higher likelihood of failing to report height or weight information.

Figure 3 compares the imputed values to the observed values for various methods used to

impute the PS score. It can be seen that the PS score was imputed somewhat lower than the

observed values. It is not unreasonable, based on past literature, that this is reflective of a

systematic di↵erence between respondents and non-respondents in terms of psychological or

overall health (Cohen & Du↵y, 2002). Further details regarding what can be gathered from

this figure are discussed in Section 6.
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(a) Height (cm) (b) Weight (kg) (c) Calculated BMI

Figure 2: Density plots of observed values (black lines) versus imputed values (blue lines) for height, weight and BMI
from single-level imputation.

(a) PS score items imputed and
subsequently totaled

(b) PS total score imputed with
rejection sampling

(c) PS total score imputed with-
out rejection sampling

Figure 3: Density plots of observed values (black lines) versus imputed values (blue lines) for the psychosomatic symptoms
score from each multi-level imputation method.62



(a) Hunger (b) Family structure (c) Immigration status (d) Family a✏uence

(e) Hunger (f) Family structure (g) Immigration status (h) Family a✏uence

Figure 4: Histograms of frequencies of observed values (black lines) versus imputed values (blue lines) for categorical
variables from single-level latent normal model (top line) and multinomial logistic model (bottom line) imputation methods.
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Table 8: Odds ratios and 95% confidence intervals following multiple imputation for analysis 1: How is hunger related to
the outcome psychosomatic symptoms?

Variable Imputation method

CCA SLI SLI-P MLI SLI-C SLI-PC TSLI TSLI-P TMLI TMLI-NR KNN
Hunger

Frequent 5.062
(4.346,5.897)

4.777
(4.160, 5.486)

4.766
(4.149,5.476)

4.790
(4.177,5.494)

4.783
(4.165,5.492)

4.777
(4.160,5.486)

4.756
(4.141,5.463)

4.721
(4.113,5.419)

4.782
(4.170,5.485)

4.734
(4.105,5.459)

4.649
(4.054,5.332)

Sometimes 1.830
(1.674,2.001)

1.775
(1.636,1.927)

1.775
(1.636,1.926)

1.781
(1.642,1.931)

1.791
(1.652,1.942)

1.787
(1.647,1.938)

1.770
(1.631,1.921)

1.772
(1.633,1.924)

1.784
(1.644,1.935)

1.776
(1.633,1.933)

1.800
(1.660,1.952)

Never ref ref ref ref ref ref ref ref ref ref ref

Random intercept
variance (SE)

0.032
(0.013)

0.037
(0.011)

0.038
(0.011)

0.039
(0.012)

0.037
(0.011)

0.038
(0.011)

0.038
(0.011)

0.038
(0.012)

0.041
(0.012)

0.040
(0.012)

0.047
(0.012)

Table 9: Odds ratios and 95% confidence intervals following multiple imputation for analysis 2: How is hunger related to
the outcome of adiposity?

Variable Imputation Method
CCA SLI SLI-P MLI SLI-C SLI-PC KNN

Hunger

Frequent 1.155
(0.967, 1.380)

1.189
(1.025, 1.378)

1.196
(1.028, 1.392)

1.202
(1.039, 1.390)

1.183
(1.019, 1.374)

1.191
(1.021, 1.389)

1.176
(1.002, 1.381)

Sometimes 1.179
(1.084, 1.283)

1.170
(1.083, 1.264)

1.170
(1.086, 1.260)

1.171
(1.084, 1.264

1.167
(1.082, 1.259)

1.168
(1.086, 1.255)

1.139
(1.059, 1.226)

Never ref ref ref ref ref ref ref

Random intercept
variance (SE)

0.065
(0.015)

0.047
(0.011)

0.048
(0.012)

0.074
(0.014)

0.047
(0.011)

0.048
(0.011)

0.056
(0.013)
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Table 10: Odds ratios and 95% confidence intervals following multiple imputation for analysis 3: How are psychsomatic
symptoms related to the outcome of adiposity?

Variable Imputation method

CCA SLI SLI-P MLI SLI-C SLI-PC TSLI TSLI-P TMLI TMLI-NR KNN

Adiposity

Obese 1.391
(1.212, 1.596)

1.363
(1.208, 1.539)

1.362
(1.213, 1.528)

1.368
(1.215, 1.540)

1.383
(1.229, 1.558)

1.382
(1.231, 1.551)

1.368
(1.207, 1.552)

1.378
(1.222, 1.554)

1.371
(1.220, 1.540)

1.369
(1.208, 1.552)

1.384
(1.225, 1.563)

Overweight 1.247
(1.114, 1.395)

1.239
(1.125, 1.364)

1.238
(1.124, 1.363)

1.242
(1.121, 1.376)

1.232
(1.115, 1.362)

1.225
(1.114, 1.348)

1.247
(1.131, 1.376)

1.245
(1.124, 1.378)

1.250
(1.134, 1.379)

1.246
(1.123, 1.382)

1.262
(1.141, 1.395)

Never ref ref ref ref ref ref ref ref ref ref ref

Random intercept
variance (SE)

0.031
(0.015)

0.035
(0.011)

0.036
(0.011)

0.037
(0.011)

0.036
(0.011)

0.036
(0.011)

0.036
(0.011)

0.036
(0.011)

0.039
(0.012)

0.038
(0.012)

0.044
(0.012)
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Figure 4 shows the imputed values versus the observed values for the categorical variables

imputed from the both the latent normal model and the multinomial logistic model imputa-

tion methods. These plots are useful to assess the impact of imputing categorical variables

under the assumption of normality. For the most part, the two methods impute categorical

variables similarly. Di↵erences can be seen primarily in the categories with small marginal

probabilities, particularly in the case of the hunger variable. Since the categorical variables

that involve small marginal probabilities for some categories (hunger and, to a lesser extent,

family structure) have relatively small amounts of missingness (see Table 1), the impact

of these di↵erences was expectedly minor as is apparent in the results of the substantive

analyses following MI (see Tables 8-10). Therefore, for simplicity, the latent normal model

methods will be focused on during discussion in Section 6.

Now turning to the results presented in Tables 8 9 and 10. Across all three analysis MI was

e↵ective in regaining the e�ciency lost during the CCA, as apparent through lower SEs.

This is evident across all imputation methods. The results of the CCAs showed a signifi-

cant association between increasing hunger frequency and increased odds of psychosomatic

symptoms (see Table 8). Following MI, a slight decrease in the magnitude of these e↵ects

occurred, but this was not substantial enough to change the interpretations of the analysis.

In the second analysis, the CCA demonstrated a significant association only between hunger

“sometimes” and increased odds of being overweight or obese; “frequent” hunger was not

significantly associated with adiposity (see Table 9). Following MI the magnitude of these

e↵ect estimates were reversed, “frequent” hunger now demonstrating larger e↵ect estimates

than hunger “sometimes”, and becoming significant at the 5% level. In the final analysis,

the CCA showed a significant association between increasing adiposity and increased odds

of psychosomatic symptoms (see Table 10). In this analysis, changes in point estimates

following MI were minimal and did not impact the findings or conclusions. Notably, across
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all three analyses no one particular MI method led to practically important di↵erences in

results and, therefore, application of any one of the MI methods would have led to the same

findings and conclusions being drawn from these analyses. This has implications for the

main goals (stated in Section 1) of this investigation as discussed in Section 6 below.

Beyond the conclusions of the substantive analyses, the results following MI methods show

more subtle di↵erences across covariates which are presented Table 11, 12, and 13 (for sim-

plicity, imputation methods not of particular relevance in following discussion were left o↵

these tables). Across covariates the most notable impact of MI can be seen for the covariate

immigration status: following MI, the e↵ect of being a “recent” immigrant is no longer signif-

icantly associated with decreased odds of psychosomatic symptoms. Following MI, all three

analyses show an increase in estimated random intercept variance as the models increasingly

account for the clustered data structure (see Tables 11-13). All implemented MI methods

generated higher random intercept variance estimates compared to the CCA, except in the

analysis with adiposity as the outcome (the analysis with the most missingness in the out-

come; Table 12) in which all MI methods resulted in decreased RIV with the exception of the

multi-level method. The multi-level imputation methods also resulted in slightly di↵erent

point and SE estimates. For the most part, the point estimates for the multi-level imputation

method were slightly larger in magnitude then those from the single-level methods. Sources

for these patterns of results are addressed in Section 6. No substantial di↵erences in point

estimates were seen between methods imputing PS score as a composite measure with re-

jection sampling and methods imputing PS score as set of 8 individual items. Furthermore,

only a minimal loss of e�ciency was seen when the rejection sampling was implemented.

However, imputing the total score without rejection sampling was accompanied with slight

di↵erences across covariate estimates and a more notable loss of e�ciency. These di↵erences

between imputation methods are discussed in detail in the following section.
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Table 11: Parameter estimates and associated Standard Errors (SEs) following multiple imputation methods for analysis
1: How is hunger related to the outcome psychosomatic symptoms?

Variable Imputation method

CCA SLI SLI-P MLI TMLI TMLI-NR KNN

Intercept -3.814
(0.654)

-3.439
(0.582)

-3.449
(0.584)

-3.449
(0.585)

-3.355
(0.587)

-3.191
(0.599)

-3.489
(0.583)

Hunger

Frequent 1.622
(0.078)

1.564
(0.071)

1.562
(0.071)

1.567
(0.070)

1.565
(0.070)

1.555
(0.073)

1.537
(0.070)

Sometimes 0.605
(0.045)

0.574
(0.042)

0.574
(0.042)

0.577
(0.041)

0.579
(0.042)

0.575
(0.043)

0.588
(0.041)

Never ref ref ref ref ref ref ref

Immigration Status

Immigrant: Recent -0.167
(0.077)

-0.120
(0.070)

-0.123
(0.070)

-0.119
(0.071)

-0.117
(0.071)

-0.144
(0.073)

-0.124
(0.070)

Immigrant: Not Recent -0.153
(0.051)

-0.123
(0.045)

-0.125
(0.046)

-0.127
(0.046)

-0.133
(0.046)

-0.146
(0.048)

-0.127
(0.046)

Born in Canada ref ref ref ref ref ref ref

Family structure

Other 0.500
(0.082)

0.536
(0.073)

0.534
(0.071)

0.530
(0.072)

0.533
(0.072)

0.502
(0.074)

0.512
(0.072)

1 Parent 0.438
(0.043)

0.414
(0.040)

0.412
(0.040)

0.413
(0.039)

0.410
(0.040)

0.414
(0.040)

0.420
(0.040)

2 Parents ref ref ref ref ref ref ref

Family a✏uence

Low 0.249
(0.072)

0.232
(0.067)

0.235
(0.067)

0.232
(0.068)

0.212
(0.066)

0.186
(0.070)

0.242
(0.069)

Medium 0.081
(0.045)

0.068
(0.043)

0.068
(0.043)

0.068
(0.043)

0.063
(0.042)

0.061
(0.042)

0.074
(0.042)

High ref ref ref ref ref ref ref

Age 0.111
(0.040)

0.093
(0.036)

0.094
(0.036)

0.095
(0.036)

0.090
(0.036)

0.079
(0.037)

0.097
(0.036)

Random intercept
variance (SE)

0.032
(0.013)

0.037
(0.011)

0.038
(0.011)

0.039
(0.012)

0.041
(0.012)

0.040
(0.012)

0.047
(0.012)



Table 12: Parameter estimates and associated Standard Errors (SEs) following multiple imputation for analysis 2: How
is hunger related to the outcome of adiposity?

Variable Imputation method

CCA SLI SLI-P MLI KNN

Intercept 0.462
(0.630)

0.758
(0.544)

0.878
(0.544)

0.944
(0.558)

0.815
(0.564)

Hunger

Frequent 0.144
(0.091)

0.173
(0.075)

0.179
(0.077)

0.184
(0.074)

0.162
(0.082)

Sometimes 0.165
(0.043)

0.157
(0.039)

0.157
(0.038)

0.158
(0.039)

0.131
(0.037)

Never ref ref ref ref ref

Immigration Status

Immigrant: recent -0.233
(0.074)

-0.195
(0.065)

-0.197
(0.064)

-0.197
(0.067)

-0.186
(0.066)

Immigrant: not recent 0.038
(0.043)

0.036
(0.038)

0.040
(0.038)

0.043
(0.038)

0.039
(0.040)

Born in Canada ref ref ref ref ref

Family structure

Other 0.336
(0.080)

0.257
(0.068)

0.250
(0.070)

0.241
(0.069)

0.222
(0.065)

1 Parent 0.163
(0.039)

0.168
(0.037)

0.170
(0.036)

0.159
(0.036)

0.173
(0.036)

2 Parents ref ref ref ref ref

Family a✏uence

Low 0.278
(0.070)

0.223
(0.061)

0.245
(0.064)

0.231
(0.062)

0.176
(0.063)

Medium 0.131
(0.041)

0.124
(0.038)

0.123
(0.037)

0.114
(0.036)

0.112
(0.039)

High ref ref ref ref ref

Age -0.126
(0.039)

-0.145
(0.034)

-0.139
(0.033)

-0.156
(0.034)

-0.107
(0.034)

Random intercept
variance (SE)

0.065
(0.015)

0.047
(0.011)

0.048
(0.012)

0.074
(0.014)

0.056
(0.013)



Table 13: Parameter estimates and associated Standard Errors (SEs) following multiple imputation for analysis 3: How
is adiposity related to the outcome psychosomatic symptoms?

Variable Imputation method

CCA SLI SLI-P MLI TMLI TMLI-NR KNN

Intercept -4.184
(0.732)

-3.596
(0.577)

-3.612
(0.568)

-3.617
(0.578)

-3.516
(0.583)

-3.367
(0.595)

-3.604
(0.579)

Adiposity

Obese 0.330
(0.070)

0.310
(0.062)

0.309
(0.059)

0.313
(0.060)

0.315
(0.059)

0.314
(0.064)

0.325
(0.062)

Overweight 0.221
(0.057)

0.214
(0.049)

0.213
(0.049)

0.217
(0.052)

0.223
(0.050)

0.220
(0.053)

0.233
(0.051)

Normal ref ref ref ref ref ref ref

Immigration Status

Immigrant: Recent -0.201
(0.089)

-0.091
(0.069)

-0.097
(0.069)

-0.089
(0.070)

-0.087
(0.070)

-0.114
(0.071)

-0.093
(0.069)

Immigrant: Not Recent -0.136
(0.056)

-0.092
(0.045)

-0.094
(0.045)

-0.096
(0.045)

-0.102
(0.046)

-0.115
(0.047)

-0.095
(0.046)

Born in Canada ref ref ref ref ref ref ref

Family structure

Other 0.504
(0.095)

0.570
(0.071)

0.570
(0.070)

0.568
(0.071)

0.570
(0.071)

0.539
(0.072)

0.550
(0.071)

1 Parent 0.486
(0.047)

0.436
(0.039)

0.434
(0.039)

0.438
(0.039)

0.433
(0.039)

0.437
(0.040)

0.442
(0.039)

2 Parents ref ref ref ref ref ref ref

Family a✏uence

Low 0.339
(0.082)

0.341
(0.065)

0.344
(0.065)

0.335
(0.066)

0.319
(0.065)

0.297
(0.068)

0.345
(0.067)

Medium 0.161
(0.050)

0.120
(0.043)

0.119
(0.042)

0.116
(0.043)

0.112
(0.041)

0.112
(0.041)

0.119
(0.041)

High ref ref ref ref ref ref ref

Age
0.144
(0.045)

0.115
(0.036)

0.114
(0.035)

0.117
(0.036)

0.112
(0.036)

0.101
(0.037)

0.116
(0.036)

Random intercept
variance (SE)

0.031
(0.015)

0.035
(0.011)

0.036
(0.011)

0.037
(0.011)

0.039
(0.012)

0.038
(0.012)

0.044
(0.012)



6 Discussion: Comparison of Multiple Imputation Methods

It is important to consider the value of implementing MI for the current analyses. Following

MI, there were improvements in e�ciency across all analyses and all covariates (see tables

11-13). Some changes in point estimates were seen between CCA results and the results

following MI, most apparently in the analysis examining the relationship between hunger

and the outcome adiposity. Following MI, the trend between increasing hunger frequency

and increasing odds of adiposity became more clear. Prior to MI, only hunger “sometimes”

was significantly associated with adiposity. Although these di↵erences were minor, it does

represent a change in substantive results interpretation following MI. Changes were also seen

for the e↵ect of immigration status in analyses involving psychosomatic complaints as an out-

come. Following MI, being a “recent” immigrant was no longer significantly associated with

a lower likelihood of experiencing psychosomatic symptoms (an e↵ect which was present in

the CCA). Based on past literature, this may be reasonably explained by cultural factors in-

fluencing the likelihood of responding to height/weight or psychosomatic symptom variables

(Lee et al., 2002). Overall, the di↵erences between results of CCA and those following MI

are small, but they do reduce concerns about potential biases present in the complete data.

Therefore, MI was considered beneficial in the present application.

The results of the present investigation also serve to highlight an important aspect of multiple

imputation: the complexity of the imputation procedure must be guided by the goals of the

analysis. (Andridge, 2011; Carpenter & Kenward, 2012; Kim et al., 2006; Meng, 1994; Reiter

et al., 2006; Seaman et al., 2012). What is considered a su�cient level of complexity in the

context of complex survey data can be challenging to determine (Drechsler, 2015), and the

current application of MI was no exception. The implemented MI methods were selected

to represent a progressive range of complexity, and varied primarily based on the extent to
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which the clustered nature of the HBSC data was accounted for, how the composite PS score

was imputed, and the parametric assumptions involved in the imputation procedure. For

simplicity, each of these aspects will be discussed independently in the following sections.

Imputation of clustered data

In the present investigation, it was seen that the random intercept variance will be under-

estimated if a multi-level imputation is not used, especially when imputation was carried

out across the whole country rather than within province (see Table 11, 12 and 13). This

is accordance with findings from past literature, and occurs due to the inappropriate vari-

ance structure of data imputed using a single-level model (Andridge, 2011; Diaz-Ordaz et

al., 2014; Drechsler, 2015; Reiter et al., 2006; Taljaard et al., 2008; Van Buuren, 2011).

Imputations for a given cluster generated from this model will be skewed towards the mean

in the overall data, thereby reducing between-cluster variability (and consequently random

intercept variance). Interestingly, as missingness in the outcome variable increases this e↵ect

becomes more apparent (as with the analysis involving adiposity as the outcome in Table

11).

Notably, the random intercept variance estimates following KNN imputation were some-

times higher (see Tables 11 and 13) than those achieved during multi-level imputation. The

KNN method included cluster status as a component of the distance function computation,

which could possibly be considered a non-parametric analogue to the fixed-e↵ects approach

for clusters discussed in Section 4.3.4. When employing the fixed-e↵ects approach with a

parametric imputation procedure, imputations for any particular cluster are skewed towards

the cluster specific means, thereby inflating between cluster variability and inflating ran-

dom intercept variance (Andridge, 2011; Drechsler, 2015; Van Buuren, 2011). A similar

e↵ect may be occurring here in a non-parametric setting, therefore this approach cannot be

recommended to appropriately account for clustering.
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Based on these findings, when random intercept variance, or the related measure of ICC,

is of particular interest in an analysis, a multi-level imputation must be implemented to

ensure congeniality. When interest lies, instead, in the estimation of a fixed parameters,

the consequences of disregarding the clustered structure during imputation are less obvious.

The repercussions of imputed data with an inappropriate variance structure may propagate

to estimates of fixed parameters estimates and their variances (Carpenter & Kenward, 2012;

Gelman & Hill, 2006; Reiter et al., 2006).

When imputing clustered data, fixed parameter variance estimates may be impacted by use

of a single-level imputation model depending on the degree to which this e↵ect varies within

schools relative to between schools (Carpenter & Kenward, 2012; Reiter et al., 2006). A

single-level model will result in variances being underestimated for any e↵ects that largely

occur between schools, such as the overall intercept. On the other hand, e↵ects that vary

mainly within schools will have over-estimated variances. In the results presented in Tables

11-13, estimates of fixed parameter variances when employing the multi-level imputation

were lower, in many cases, than the single-level methods, although there were exceptions.

Most clearly, variance estimates for the overall intercept were higher following multi-level

imputation. This is expected as this parameter will primarily vary between schools and,

therefore, the associated variance was underestimated following single-level imputation.

Fixed parameter estimates themselves may be a↵ected when imputing clustered data un-

der a single-level model, particularly when substantive analyses involve generalized linear

multi-level models with certain link functions. As discussed in Section 3.3, certain general-

ized linear multi-level models (e.g. logistic or multinomial) assume that the individual-level

residual variance is a fixed constant and, therefore, not estimated (Breslow & Clayton, 1993;

Demidenko, 2013; Rabe-Hesketh & Skrondal, 2001, 2006). As the between-cluster residual

variance increases the total residual variance increases as well. To account for this, the
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dependent variable is rescaled and model parameter estimates increase in absolute mag-

nitude. Therefore, if random intercept variance is underestimated following imputation of

clustered data under a single-level model, the parameter estimates will be accordingly biased

toward the null (Breslow & Clayton, 1993; Demidenko, 2013). The results from the present

investigation are generally consistent with this point. Parameters estimated following multi-

level imputation tended to be greater in absolute magnitude than those estimated following

single-level imputation (although not to a great extent; see table 7). As an aside, this e↵ect

was also seen during the CCA in Tables 3-5, in which certain weighting methods may have

biased random intercept variance estimation. Exceptions to this pattern in Tables 11, 12,

and 13 may be attributable to another repercussion of disregarding the multi-level structure

of the data. As discussed in Section 3.3, use of a multi-level model can be additionally

advantageous in the presence of unbalanced cluster sizes (Gelman & Hill, 2006). Multi-level

models allow individual cluster estimates to be more uniquely represented in the final point

estimates, while in contrast, the estimates from a single-level model may be unnecessarily

skewed towards the relationships that exists within the largest cluster samples. This may

be particularly relevant in this data set as the size of the clusters a highly variable ranging

from 2 to 315 students (Gelman & Hill, 2006). While the direction of this potential skew

was not known a priori, a brief supplementary single-level analysis was used to confirm the

occurrence of this e↵ect in the present investigation. Single-level logistic regressions were

performed for each of the three substantive analyses. The skew that was apparent between

the single-level and multi-level analyses was generally mirrored in the di↵erences between

estimates following the single-level and multi-level imputation methods (with multi-level

analyses) as expected.

To summarize, the results of the present investigation demonstrate consequences of inad-

equately capturing the variance structure of clustered data set during imputation. Most
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obviously, it was seen that random intercept variance is underestimated if the multi-level

data of the structure is not accounted for. This is particularly important if estimates related

to between cluster variability (random intercept variance, ICCs, or when random slope is

included) are a focus of an analysis; in these circumstances a multi-level imputation model

should be used to ensure congeniality. On the other hand, when interest is in estimation

of a parameter under the assumption that it is constant across the population (as in the

present investigation) disregarding the multi-level structure of the data during imputation

had a minimal impact. Subtle repercussions are apparent in point estimates due to three

identified causes:

(a) The inappropriate variance structure of imputed values may impact the estimated

variance of fixed e↵ects, depending on the degree to which a relationship exists

within or between clusters;

(b) There are inherent ties between random intercept variance and point estimates dur-

ing multi-level logistic regression, so imputing based on an appropriate variance

structure during these types of analyses may be particularly important; and

(c) The advantage multi-level analysis provides with unbalanced clusters is lost during

single-level imputation, and the point estimates are overly skewed towards the re-

lationships which exist in the clusters which contribute the most individuals to the

sample.

In the present investigation, the consequences of the points (a-c) above were minor, and did

not result in any practically important di↵erences in results. Therefore, in the present inves-

tigation, and likely many others, a single-level imputation method is adequate to achieve the

goals of the analyses. In some settings, however, the above points may have more extensive

repercussions. Point (a) above is always of concern, and may become more consequential
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with increases in the strength of clustering or the rate of missingness in the outcome. When

analysis will involve a mutli-level logistic regression model (or certain other generalized linear

multi-level models) point (b) must acknowledged. Again, as missingness in the outcome or

the strength of clustering increases, the incorrect variance structure of imputed data may

result in more substantial underestimation of random intercept variance, in which case, the

resulting bias during a multi-level logistic regression would be more substantial. Finally,

with unbalanced clusters (without su�cient compensation of a large sample size) point (c)

is of concern.

There may be residual bias even with the multi-level imputation model if this model does

not perfectly capture the true structure of the data (e.g. if there is insu�cient auxiliary

information to fully describe inclusion probabilities). However, the parametric assumptions

for the multi-level model are more tenable than those necessary for unbiased estimation with

the simpler imputation models in the settings discussed above.

Imputation of a composite measurement

Imputation of multi-item scales can make maintaining congeniality during imputation more

challenging (Eekhout et al., 2014; Gottschall et al., 2012; Shrive, 2006). Imputing each

individual component of the composite measurement is more straightforward to implement,

but may require additional considerations for the categorical variables which may make up

the measure (Bernaards et al., 2006; Demirtas, 2009; Horton et al., 2003; Jia & Enders, 2015;

Rodwell et al., 2014; von Hippel, 2013). On the other hand, imputing the composite measure

fails to exploit information available from partially-observed items, but makes assumptions

of joint normality more reasonable. A rejection sampling procedure can be used to regain

this lost information and limit the e�ciency loss associated with imputing the composite

measure, however, this requires more complex MI specifications (Carpenter & Kenward,

2012). The results from the present investigation reflect these advantages and disadvantages
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of the varying approaches used to impute a multi-item measure.

The rejection sampling method implemented was successful at capturing the information

present in the observed PS score items for partially-observed individuals. This is evident

through the similarity in parameter estimates between the methods imputing the total PS

score and the methods imputing each individual item (see Tables 11-13). Furthermore, the

loss of e�ciency which occured due to imputing the total PS score variable was negligible

when rejection sampling was implemented. On the other hand, the approach which aban-

doned the rejection sampling during the imputation of the total PS score shows a more

notable loss of e�ciency (see Tables 11-13). Interestingly, the method which did not utilize

rejection sampling also generated noticeably di↵erent parameter estimates across covariates

compared to both the rejection sampling method and the method imputing each of the 8 PS

score items. When rejection sampling was not implemented, values for the total PS score

were entirely unrestricted and could be imputed outside of the range of realistic values (as

can be seen in Figure 3). The present results suggest that this impacted how the relation-

ships between PS score and covariates were maintained during imputation. Overall, these

di↵erences are not substantial, but they do highlight the advantages present in the rejection

sampling method.

Figure 3 shows imputed versus observed values of the PS total variable for methods which

imputed the individual PS score items, the total PS score with rejection sampling, or the

total PS score without rejection sampling. These plots show the ability of the rejection

sampling method to re-capture the information lost when imputing the total PS measure.

Non-parametric imputation

Non-parametric MI methods o↵er an advantage when an imputation model may require

specification of higher-order relationships and interactions which are unknown or infeasible
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to model (D’Orazio, 2011; Liao et al., 2014; Shah et al., 2014). Furthermore, these methods

select values for imputation directly from the observed data, so categorical variables and

restricted range variables do not pose additional challenges. Aside from the multi-level data

structure, these methods could be considered ideal in the present setting; non-parametric

methods may suitably accommodate the potential complex relationships between the large

number of mixed-typed variables involved.

The results from the KNN method show only minor di↵erences from the parametric impu-

tation methods. This may indicate that possible misspecified or unmodelled relationships in

the parametric approaches did not substantially diminish the performance of these methods.

On the other hand, the minimal di↵erences between the KNN and the parametric methods

may be due to specific aspects of the implemented KNN imputation methodology. Specif-

ically, only the missing values for a recipient individual were replaced with the observed

values of the donor. In contrast, some authors have suggested to replace the entire pattern

of the recipient (missing and observed variables) with the values of the selected donor (Alli-

son, 2001). The approach implemented in this investigation was selected to avoid throwing

out observed data and maximize the number of potential donors (since donors can have

missing values for the observed values of target recipients). However, it is possible that it

inadequately maintained the inter-variable relationships present in the data thus limiting

the main advantage of this non-parametric MI method.

6.1 Limitations and Areas for Future Research

The present investigation implemented only a subset of all possible imputation procedures

which may have been applicable, and in only a specific set of circumstances for which they

could be employed. The main goal was to compare MI methodology in a realistic data

setting, which brings the limitations present in any real data application of MI: the true
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values of estimates are not known. Therefore, interpretations regarding bias and e�ciency

are only speculative, as informed by past research; it cannot be established which method is

truly performing best. Regardless, these types of applications provide important information

which cannot be gained through simulation studies alone. Real data does not abide by the

restrictive assumptions and parameters involved in simulation studies, and true population

values are usually not known for incorporation during simulations. A main objective of the

current investigation was to evaluate MI methodology within the context of the HBSC so

recommendations could be made for future analyses involving HBSC data. This necessitated

the trade-o↵ between real data applications and simulation studies.

The current application focused on three analyses which have certain characteristics that

may make generalization of results challenging. Firstly, the strength of the clustering occur-

ring in the analyses was relatively low (as evident from the random intercept variance, see

Tables 8-10). Di↵erences between methods used to incorporate the clustered data structure

may be more apparent in a cases where the magnitude of clustering is stronger (Drechsler,

2015). Further comparison of these methods in analysis in settings which involve a greater

magnitude of clustering would be a useful area of additional research. Secondly, the current

investigation focused on substantive analyses which only included random intercepts. Com-

parison of these methods in settings which involve more complex multi-level analyses may

reveal important di↵erences in approaches not seen here. Since the present investigation was

limited in these regards, the findings here may not be extendable to investigations involv-

ing data with high ICCs, or complex multi-level models with random slopes, or cross level

interactions.

It is also important to discuss methodological limitations of the presently applied MI pro-

cedures. The FCS algorithm was utilized in the current study based on its flexibility to

incorporate the rejection sampling methodology. A common criticism of the FCS approach
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is the uncertainty around whether the conditionally specified models adhere to some exist-

ing joint distribution. Although studies have shown that the FCS approach performs well

despite this, the implication during multi-level imputation are not as clear (van Burren et

al, 2006; van Burren, 2007; Lee & Carlin, 2010; White et al., 2011). van Buuren (2011)

recommends the use of group-specific residual variances during multi-level FCS imputation,

however he does not support this recommendation with evidence from application. The soft-

ware PAN (interfaced with mice) used to implement the multi-level imputation methods in

this investigation does not allow for the specification of heterogeneous within group residual

variances. There may be a case in which a linear multi-level regression of a variable Y (with

a homogenous within-group variance) on a variable X, may lead to a conditional distribution

of X given Y with a heterogeneous within-group variance (Snijders & Bosker, 2012). Sni-

jders & Bosker (2012) suggest this may be of concern when cluster sizes are very unbalanced.

Therefore, this limitation may be relevant in the current investigation due to the unequal size

of samples between schools, although the consequences cannot be determined. As software

available to implement multi-level MI procedures expands to make this more feasible, future

research should examine the impact of this limitation.

The imputation models employed during the present investigation were not entirely con-

genial to the models used for analysis. Aside from the uncongeniality introduced by the

inclusion of auxiliary variables, the exact relationships investigated in the substantive analy-

sis models were not directly incorporated in the imputation models. For example, BMI was

imputed as height and weight variables, despite being categorized into age and gender spe-

cific categories during analysis. A more congenial approach may have been to impute these

categories directly, and accept the loss of the information present in the partially-observed

height and weight variables. Similarly, the psychosomatic complaints variable was imputed

in multiple ways, but none of these involved imputing it as the dichotomized variable that
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was incorporated during analysis. In general, the consequences of these choices are expected

to be minimal. The imputation models still incorporated all the variables of interest, albeit

in a more detailed form, leading to an arguably “richer” imputation model (see Section 4.1;

Meng 1994; Rubin, 1996; Schafer, 2003).

Lastly, MI methodology in the present investigation involved the assumption that the data

being imputed are MAR. This assumption was accepted, however it could be argued that

some of the imputed variables were MNAR. The self-reported weight variable is especially

likely to be MNAR, as those who are of a heavier weight may be less likely to report it.

The HBSC data set contains variables which ask about students experience with dieting,

body dissatisfaction, and weight perception, and including them as auxiliary variables in the

present investigation may have helped improve the assumption that self-reported weight is

MAR. Regardless, it is appropriate in such settings to perform sensitivity analyses to examine

the impact of the MAR assumption (Carpenter & Kenward, 2012). Although outside of the

scope of this investigation, such sensitivity analyses could strengthen the conclusions drawn

from this investigation.

6.2 Conclusions and Practical Recommendations

MI was successful at regaining e�ciency lost during the CCA and reducing concerns about

biases. Employing MI changed some point estimates and reduced all variances compared

to CCA in the three HBSC analyses, although the choice of how to implement MI did not

have a substantial impact on the conclusions drawn in any of the substantive questions of

interest in this setting. However, more generally, the decision about how to implement MI

in complex survey settings may have an important impact in two ways:
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i. Neglecting to account for the clustered nature of the data in the MI procedure can

result in underestimation of random variances and biases in the SEs surrounding

point estimates. Moreover, underestimated random variances will result in biased

point estimates when the analysis of interest involves certain generalized linear multi-

level regressions (e.g. logistic).

ii. In the presence of unbalanced cluster sizes and disproportionate sampling, use of

single-level method MI methods may also cause point estimators to be overly re-

flective of the relationship among those over-represented in the sample (the largest

cluster samples).

Each of these e↵ects was observed within the results of the present investigation, although

the consequences were small enough to not significantly a↵ect conclusions. In terms of

accommodating missingness within a multi-item measurement, it was found that imputing

the items themselves and implementing a rejection sampling method were similarly successful

in terms of retaining the partial information that was available. Both methods resulted in

very similar point estimates with the rejection sampling approach being only slightly less

e�cient. Ignoring the partially-observed response information and imputing the composite

score as if it were any other incompletely observed variable, however, resulted in a more

noticeable loss in e�ciency and slightly di↵erent point estimates.

Based on examination of the literature and the findings in the present application, recom-

mendations for future MI-based analyses of incomplete complex survey data with composite

scores such as the HBSC are threefold:

1. If ICCs or random e↵ects are of particular interest in the analysis, if clusters are

largely unbalanced, or if analyses will involve generalized linear multi-level mod-

els with a non-identity link function, then one should implement a multi-level MI
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method to ensure greater congeniality. If fixed parameter estimates are the only

target of interest and if clusters are relatively balanced in size, then a simpler,

single-level MI approach will likely su�ce to reap the main benefits of MI.

2. The partial information available should always be used when imputing total score

of a summary measure. This can either be done either by imputing the individual

score components themselves before summing or by incorporating the partial scores

to define a valid imputation space that can be incorporated with rejection sampling.

The latter approach may have a slight edge in terms of making the underlying

normal distribution assumption more tenable, while the former approach may be

easier to implement in practice and may be more flexible when considering di↵ering

weightings in the creation of the score.

3. When it not necessary to employ multi-level imputation, non-parametric methods

are advantageous since these methods do not require assumptions about underlying

normality in the presence of many categorical variables, and do not require the

often challenging task of specifying a parametric imputation model. Furthermore,

in settings with large sample sizes, the potential loss of e�ciency accompanying non-

parametric imputation is not of practical concern. However, since there is no ideal

way to account for a clustered data structure during non-parametric MI, parametric

multi-level MI should be used in cases when the clustered structure of the data must

be accommodated (see recommendation 1).

In summary, MI is an advantageous technique for handling missing data in complex surveys

since it can improve e�ciency and reduce bias. Congeniality during MI is important to

achieve unbiased results, and requires that an imputation procedure accurately maintain

all relationships in the data that will have a role in any subsequent analyses. Therefore,

the imputation methodology must necessarily be directed by the goals of the subsequent
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analysis. In complex survey settings, uncongeniality can introduce biases in ways that are

less obvious than in simpler settings. While simpler MI methods will often su�ce for complex

surveys, these should not be applied haphazardly. Thorough consideration of analysis goals

is essential when determining the methodological approach that will achieve appropriate

findings and conclusions when employing MI in complex survey settings
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