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Abstract 

In clinical trials, it is often desirable to evaluate the effect of predictive factor such as marker 

response on the overall survival. However, the marker response and survival could usually be 

associated by some unobservable factors, in which case the conventional statistic models may 

not be appropriate. In contrast, joint modelling of marker response and survival data provides 

a less biased but more efficient inference by analyzing these two processes simultaneously. In 

this study, we focus on a special type of marker response: binary outcome, which is 

investigated together with overall survival data using a joint model linked by cluster-specific 

multivariate random effects. A modified penalized joint likelihood approach is proposed to 

make statistical inference for the joint model. A series of simulation studies are conducted to 

assess the finite sample performance of the proposed joint model and inference method in 

different scenarios, which is further compared with the separate model implemented by 

standard statistic functions. In the end, the proposed method is applied to NCIC Clinical 

Trials Group’s HD.6 clinical trial data to explore the predictive effect of remission on 

survival in patients with Hodgkin’s lymphoma. From the above study, we conclude that the 

proposed joint model outperforms the separate model when there exists a strong underlying 

association between the marker response and survival data. The modified penalized joint 

likelihood method yields reasonably accurate parameter estimates and provides a 

computationally efficient alternative to the existing inference approaches. The concern about 

underestimation of standard errors with the proposed method is also addressed using 

Jackknife resampling method. 
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Chapter 1  

Introduction and Literature Review 

1.1	Marker	Response	and	Generalized	Linear	Mixed	Model	

In clinical trials, treatment efficacy is one of the primary interests and is usually determined 

by measurement of marker response and/or survival. Thanks to the rapid development of 

technics in the areas of immunology, proteomics and microarrays in biomedical research 

(Pepe et al. 2001), it is possible to predict the survival of patients based on the result of 

marker response. With help of the early diagnosis, doctors may revise the treatment plan 

accordingly and improve the clinical outcome.  

 

Many marker responses are measured repeatedly, which generates longitudinal data, for 

example, CD4 counts or viral load over time (Neuhaus et al. 2009). In fact, the study in 

relationship between longitudinal measurement and survival data is one of the hottest topics 

in clinical trial study. Over the past few decades many related papers have been published. 

Wu et al. 2012 provided a nice overview of recent studies regarding this research topic. In the 

research work presented here, however, we focus on another type of marker response: binary 

outcome at a single time point. In some clinical trials, it may not be feasible to make the 

repeated measurement of the early response and therefore the measurement does not involve 

time factor but simply yields single binary outcome (Lai et al. 2012). For instance, In NCIC 

Clinical Trials Group’s HD.6 clinical trial (more details in Section 1.5), after applying either 

chemotherapy or radiotherapy treatment, an evaluation of Hodgkin’s lymphoma progression 

was performed and patients were classified into either “remission” or “no remission” group. 

This binary remission status could play a predictive role in assessing the long-term survival 

of patients.  
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Mixed effect model, which includes both fixed effects and random effects, is commonly used 

to analyze clinical trial data involving repeated measurement or clustered data. The random 

effects, either individual-specific or cluster-specific, account for unobservable characteristics 

that are different for each individual or group, respectively. In linear mixed effect model, the 

response variable is assumed to follow a normal distribution. However, in many cases, the 

response is not necessarily normally distributed. For instance, if the outcome is in a binary 

scale, it cannot be analyzed using linear mixed effect model. In this study, we apply 

generalized linear mixed model (GLMM) with a logit link function for clustered data to 

model the binary marker response (more details will be discussed in Section 1.3.3).  

 

Model (1.1) is an example of GLMM with a logit link, where for observation 1,2, … , 

 is the probability of “response”;  is a 1 vector of covariates for fixed effects and 

 is a 1 vector of fix effects;  represents a 1 vector of covariates for random 

effects and  denotes a 1 vector of random effects for cluster j, which models the 

dependence of outcome attributed to cluster effects and explains between-cluster variability. 

If  is set to 1, then  is the random intercept for cluster j. According to this model, we 

assume that the marker response follows a Bernoulli distribution, conditional on the 

cluster-specific random effects. It is noted that there is no error term in (1.1) because different 

from linear regression, logistic regression models probability instead of actual value and the 

probability itself deals with imprecision of measurement.  

                       (1.1) 

 

1.2	Survival	Analysis	 	

The primary endpoint of interest in phase III clinical trial study includes events such as death, 

recurrence of disease or development of a new disease (Singh and Mukhopadhyay, 2011). 

Researchers usually deal with the follow-up time to development of the target event, which is 

also known as “survival data”. One distinguishing feature of survival data is that it is often 
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subject to “censoring” because during the period of study the event of interest may not be 

observed for all the patients due to loss to follow-up or early study termination.  

 

There are mainly three types of modeling strategies for survival data: nonparametric, 

parametric and semi-parametric analysis. As indicated by their names, this classification is 

based on the extent to which they rely on the parametric assumption.  

 

Nonparametric analysis makes no assumption about the survival distribution. Therefore, it is 

useful when the true distribution is unknown or hard to approximate. However, since there is 

no parameter with finite dimension involved, it would be difficult to model data with multiple 

covariates using nonparametric analysis. One typical example for nonparametric analysis is 

Kaplan-Meier estimation, which is used to estimate the survival function from lifetime data 

(Kaplan and Meier, 1958).  

 

If the association between survival and covariates is of interest, we can apply survival 

regression model using parametric or semi-parametric method. For parametric analysis, all 

the covariates in the model are specified and the hazard function is fully characterized in the 

model. Its main strength is the easy interpretation and estimation. In addition, parametric 

method makes possible the sophisticated analysis. However, if a parametric model is 

misspecified, the results could be misleading. Accelerated Failure Time (AFT) model, for 

instance, is one widely-used parametric model (Wei, 1992).  

 

Besides nonparametric and parametric analysis, there is another type of analytical tool for 

survival data called semi-parametric method, which contains both parametric and 

nonparametric components. For example, in Cox Proportional Hazards model (Cox PH 

model), the regression term is specified while the baseline hazard function is unspecified 

(Cox, 1972). Compared with the parametric method, semi-parametric method is more flexible 

and makes less assumption about the distribution of survival data. In addition, even if the 

baseline distribution is not specified, the semi-parametric model still allows relative hazard 

between covariates to be estimated so that it is possible to evaluate the effects of the 
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explanatory variables. For these reasons, semi-parametric model gains its popularity in 

survival analysis. In this project, we decide to investigate the survival data using the 

semi-parametric Cox PH model with random effects (frailty). More details will be given in 

Chapter 2.  

 

1.3	Joint	Modeling	in	Survival	Analysis	

1.3.1 Overview of Joint Modeling  

In the previous two sections, we discussed about two main study interests in the process of 

clinical trial. In practice, it is common to collect both short-term marker response data (tumor 

size, remission/non remission, cancer cell count, etc.) and long-term survival data (time to 

event). A lot of previous methods analyzed these two types of data separately. However, the 

separate analysis may not be adequate and can lead to bias and inefficient estimation because 

in many cases these two outcomes are not independent and could be linked by certain 

unobserved process (Neuhaus et al. 2009). 

 

To overcome this problem, joint modeling of marker response and survival data was 

introduced. The joint model analyzes these two types of outcomes simultaneously and is able 

to reduce the bias of parameter estimates and in the meanwhile improve the efficiency of 

statistical inference, which, as a result, has attracted great attentions from clinical trial 

researchers (Wu et al. 2012). One type of joint models that has been extensively studied in 

recent years is the joint analysis of longitudinal measurement and survival data (Henderson et 

al. 2000; Ding et al. 2008 and Li et al. 2010). Many different joint modeling approaches have 

been proposed so far, among which a typical strategy for model setting is to link with shared 

random effects or joint distribution of random effects the mixed effect model for longitudinal 

data and AFT or Cox frailty model for survival data (Wu et al. 2012). In this case, 

longitudinal data and survival data are considered to be independent conditional on the 

random effects and observed covariates.  
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As mentioned above, majorities of existing joint survival models are dealing with 

longitudinal measurement and survival data. Little research has addressed another typical and 

important marker response: binary outcome. Inoue et al. 2002 developed parametric mixture 

model for binary tumor response and time to event under Bayesian framework. Thereafter, 

Lai et al. 2012 proposed a semi-parametric model that connected the binary response and 

survival endpoint based on frequentist approach in sequential designing study of phase II – 

phase III cancer clinical trial. However, as far as we know none of the existing research has 

adopted the joint modeling strategy for binary response using shared or joint random effects. 

In this project, we propose a joint model for binary response and survival data linked through 

the joint distribution of cluster-specific random effects. With the proposed model, we aim to 

investigate the potential association between treatment and binary marker response, and 

association between treatment and survival. More importantly, we would like to know if the 

marker response could be used as potential surrogate for survival, in other words, if the early 

response to the treatment is predictive for the time to events. It should be noted that even if 

the patients who respond to the treatment have longer survival time, we cannot conclude that 

there is a causal relationship between the response and survival. As pointed out by Anderson 

et al. 2008, response to the treatment could be simply a marker of patients with prognostically 

favorable characteristics, which could be the true reason for longer survival.  

 

1.3.2 Cluster-Level Random Effect 

Most clinical trials nowadays are conducted in multi-centre manner. The multi-centre 

designing ensures the adequate sample size and generalizability of study (Glidden et al. 2004). 

The patients within each centre potentially share similar characteristics. For example, they 

could have similar socioeconomic status and expose to the same environmental factors. In 

addition, the treatment quality tends to be consistent within each centre while vary among 

different centres. All these underlying dependences within each centre are not able to be 

captured by fixed-effect covariates and failure to consider these dependences may cause 

misleading results. Accordingly, it is crucial to introduce cluster-level (or called centre-level) 
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random effects to account for the dependence of patients within each centre (Glidden and 

Vittinghoff, 2004). 

 

Another reason for choosing centre-level random effect in this study is that individual-level 

random effect is unidentifiable in our proposed joint model. In the case of longitudinal data 

modeled by linear mixed regression, individual-level random effect is usually implemented to 

incorporate the correlation of repeated measurements within individual. In the context of 

logistic regression, however, we cannot estimate the individual-level random effect in the 

linear predictor like the ordinary linear regression because the variance of individual random 

effect is unidentified (Lancaster et al. 2004). Therefore, in our study the two regression 

models are linked by joint distribution of centre-level random effects instead of 

individual-level random effects. The centre-level random effects are assumed to follow 

bivariate normal distribution as a reasonable approximation (Breslow et al. 1993). In addition, 

normally distributed random effects allow us to handle negative association, which is not 

possible for the Gamma distributed frailty (Ripatti et al. 2000).  

 

1.4	 Joint	 Inference	 and	 Penalized	 Partial	 Likelihood	 (PPL)	

Method	 	

One simple statistical inference approach for joint modeling with shared unobserved 

variables is the two-step (or called two-stage) method (Dafni and Tsiatis 1998). The first step 

of this method is to estimate the shared latent variables via the first sub-model based on the 

observed data; in the second step, the inference is made via the second sub-model with the 

shared latent variables substituted by their estimated values from the first step as if they are 

observed data. The two-stage method is computationally simple and easy to be implemented 

with standard software. Nevertheless, since it fails to make inference on the two processes 

simultaneously, the results could be biased (Ye et al. 2008).  

 

A more robust and widely-used inference approach is the joint likelihood method, which, as 
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indicated by its name, utilizes the joint likelihood of all observed data to conduct statistical 

inference simultaneously for the joint model. It is able to reduce the bias and yield efficient 

inference if the joint model assumption is appropriate. However, the maximum likelihood 

analysis often involves intractable high-dimensional integrals due to unobservable random 

effects and it is more so if the frailty is normally distributed. For instance, Expectation- 

Maximization (EM) algorithm is a typical method to compute maximum likelihood estimates 

(MLE) of unknown parameters for the joint model with latent variables by iterating between 

expectation-step and maximization-step (Wulfsohn et al. 1997). In this method, 

expectation-step may involve intractable integral. Several numerical integration approaches 

have been developed to deal with the intractable integral, such as Gauss-Hermite Quadrature 

(GHQ) and Monte Carlo method, which, however, could be very computationally intensive. 

It is worth noting that the computation can be further complicated if the mixed effect model is 

non-linear (e.g. the generalized linear mixed model used in our study).  

 

Alternatively, a more computationally efficient approximation approach: Laplace 

approximation can be applied to tackle the challenge of intensive computation brought by 

numerical integration (Breslow and Clayton, 1993; Rizopoulos et al. 2009). Compared with 

GHQ and Monte Carlo method, Laplace approximation provides computational advantage 

and if the number of repeated measurements within individual or the number of observations 

within each cluster is not too small, it can approximate the integral reasonably well.  

 

Following the Laplace approximation of likelihood function, Ripatti et al. 2000 introduced 

penalized partial likelihood (PPL) method for multivariate frailty model to conduct statistical 

inference. Thereafter, Ye et al. 2008 compared PPL method and EM algorithm in the context 

of joint survival model and found out that the performance of the method based on penalized 

joint likelihood was comparable to the EM algorithm in different simulated scenarios. In the 

meanwhile, PPL method offers several advantages: (1) As mentioned earlier, EM algorithm 

may not be feasible for high dimensional random effects because the E-step has to deal with 

complex integration. PPL method based on Laplace approximation, however, can avoid high 

dimensional integration. (2) The average computing time for parameter estimation with EM 
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algorithm is much longer than penalized joint method. PPL method is more time-efficient. (3) 

Computing the asymptotic variance of parameter estimates could be extremely 

time-consuming with EM algorithm. However, for penalized joint method, the information 

matrix is simply the by-product of Newton-Raphson method, which can be easily used to 

compute variance estimates (Ye et al. 2008). In this study, we develop a modified penalized 

joint likelihood method for the proposed joint model.  

 

1.5	A	Motivating	Example:	Hodgkin’s	Lymphoma	Clinical	Trial	 	

1.5.1 Data Outline 

The joint model for binary response and survival data proposed in the report was motivated 

by NCIC Clinical Trials Group’s HD.6 clinical trial (Meyer et al. 2012), which compared the 

treatment effect of doxorubicin (Adriamycin), bleomycin, vinblastine, and dacarbazine 

(ABVD) alone versus subtotal nodal radiation therapy with or without ABVD treatment on 

stage IA or IIA nonbulky Hodgkin’s lymphoma.  

 

This clinical trial is a “multi-centre randomized controlled trial”, in which 399 eligible 

patients were recruited in 29 research centres located in Canada and the United States. Based 

on the patient risk status (defined in Meyer et al. 2005), patients were stratified into either 

“favorable risk cohort” or “unfavorable risk cohort”. Thereafter, all the patients in each 

cohort were randomized into two treatment arms: ABVD alone group and radiotherapy group 

with median follow-up period of around 12 years. In radiotherapy group, patients with 

favorable risk profile received subtotal nodal radiation therapy alone while the ones with 

unfavorable risk profile received two cycles of ABVD treatment followed by radiation 

therapy; in ABVD-alone group, patients with favorable or unfavorable risk profile received 

four cycles of ABVD. Restaging of disease was performed at the end of treatments (six 

months after randomization) to evaluate the “remission status” of patients. Those who 

showed no clinical or radiological evidence of Hodgkin’s disease were classified into 
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“remission” group while others were classified into “non-remission” group (Lister et al. 

1989). Correspondingly, patients who had remission were considered to be “response-positive” 

while the ones who did not were sd“response-negative”. Information regarding the 

characteristics of patients such as age and gender were also recorded prior to the 

commencement of clinical trial. Eventually, they found that ABVD alone therapy group had 

higher rate of overall survival (94%) compared with radiotherapy group (87%). The higher 

death rate in radiation therapy group could be associated with other diseases caused by 

radiation treatment. Another interesting finding was that the ones who had remission 

displayed a higher rate of freedom from disease progression (94%) and a trend towards 

higher rate of overall survival (98%) as compared with the ones without complete remission 

(81% and 92%, respectively), which rises an intriguing question: is it possible to use the 

restaging of disease (remission / non-remission) as a potential surrogate for survival rate and 

consequently help clinicians to make subsequent treatment decision at the early stage of the 

trial? This is one of the main questions we will address in this project.  

 

1.5.2 Guarantee-Time Bias 

Many cancer clinical trials involve measuring response to treatment as a routine procedure 

during the follow-up period. In HD.6 clinical trial study, the restaging of disease was used to 

evaluate the response to treatment. Giobbie-Hurder et al. 2013 pointed out that if the 

comparison of survivals or other types of events of interest was directly made across the 

groups defined by treatment response, “guarantee-time bias” could be introduced. This is 

because patients have to live long enough to be evaluated as either responder or 

non-responder. If the patients who died before the classifying event are considered to be 

non-responders, it will lead to the bias in favor of the positive effect of response to treatment 

in elongating survival time. The magnitude of influence caused by guarantee-time bias is 

positively associated with the time when the response to treatment occurs relative to the 

primary outcome event (e.g. survival) and the number of the early outcome events that occur 

prior to the classifying event (Giobbie-Hurder et al. 2013).  
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There are two commonly used analytical techniques to reduce the bias: (1) extended Cox PH 

model with time-dependent covariate; (2) conditional landmark analysis (Anderson et al. 

2008). The first method has higher statistical power than the second one. However, it requires 

the track of the time when classifying event occurred during the follow-up period, which, in 

the case of HD.6 clinical trial, is not available. Thus, in this report, we apply the second 

method. Landmark time here is defined as the time when the evaluation of response to 

treatment (or restaging of disease) occurred, which is six months after randomization. All the 

patients who died or were lost to follow-up before the landmark time are excluded from the 

study. With this method, the data analysis is only based on a subset of original data, which 

causes some loss of statistical power. However, the statistical inference based on conditional 

landmark analysis is unbiased by the guarantee time (Anderson et al. 2008, Giobbie-Hurder 

et al. 2013). In addition, the simplicity and easy interpretation of landmark analysis make it a 

useful tool to explore the role of treatment response in the presence of guarantee-time bias 

(Giobbie-Hurder et al. 2013).  

 

1.6	Objective	and	Outline	

In this project, we construct a joint random effect model to analyze the binary response and 

survival data simultaneously, which, as far as we know, is the first study of its kind. In 

addition, a modified multivariate penalized likelihood method for parameter and variance 

estimation is developed to make the computation easier than the existing methods and in the 

meanwhile yield reasonably accurate estimates.  

 

The rest of report is organized as follows: in Chapter 2, the proposed joint model for binary 

response and survival data and its likelihood function are first constructed, followed by a 

detailed description of proposed multivariate penalized likelihood (MPL) method for 

parameter and variance estimation. In Chapter 3, simulated data with different parameter 

specifications are generated and performance of the proposed joint random effect model is 

compared with the separate model with random effects under different settings of parameter 
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values. In Chapter 4, the proposed model and inference method are applied to the actual 

clinical dataset from Hodgkin’s lymphoma clinical trial. The roles of fixed effects and 

centre-level random effects are investigated. Summary and future directions are presented in 

Chapter 5.  
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Generalized linear mixed model for treatment response  has the structure as showed in 

model (2.1). It is noted that there is no error term in this model as in linear model because the 

variability of the binary outcome has been accounted for by modeling the probability of the 

event.  

1	 , , =     (2.1)     

We assume a Cox proportional hazards model with random effect (frailty) for the survival 

data (model (2.2)), which is an extension of widely-used Cox PH model by introducing 

centre-specific random effect . As mentioned above,  is a vector of predictors with the 

first element being observed treatment response variable .  

, , 	   (2.2) 

The two sub-models are linked by joint centre-level random effects  and  ( =1,2,.., ). 

We assume that they follow a zero-mean bivariate normal distribution (2.3), where  and 

 determine the magnitude of variation of centre-level random effects,  represents the 

strength of association between two random effects and ∑ denotes the variance-covariance 

matrix of random effects. When 0, there is no association between two random effects 

and the joint model is reduced to separate model. As we can see, the association between 

binary treatment response and survival is determined by regression coefficient of covariate 

 in Cox frailty model as well as the covariance . We assume that these two sub-models 

are independent given the covariates and random effects.  

=  ~ ,
		
	 	

 = , ∑   (2.3) 

 

2.2	Likelihood	Function	

The joint likelihood function for parameters based on observed data can be written as:  

; ,  ∏ ∏ , | 	=∏ ∏ , , , |   (2.4) 

where , ,  is the full likelihood function of Cox frailty model, ,  is 
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the likelihood function of GLMM and |  is the density function of bivariate normal 

distribution. The joint likelihood function can be rewritten as: 	

; , exp exp	 Λ exp  

																																																												 ∏
|∑|
exp	 ∑ 	       (2.5) 

Maximization of likelihood function (2.5) is difficult because it has to deal with integration 

with respect to random effects . Therefore, we apply first-order Laplace method for integral 

approximation of function (2.5), as described in Breslow et al. 1993. After ignoring the 

constant term and taking the logarithm, we obtain the approximate marginal log likelihood 

function (2.6). 	( ,	 ) denotes the solution to 0, where  =  (see 

function 2.6). Ripatti et al. 2000 pointed out that if variance-covariance matrix ∑ is known 

and random effects u and v are treated as fixed-effect parameters, then the combination of 

terms  and  (  is actually a penalized log likelihood with the term  penalizing 

for the extreme value of a.  

; , log|∑| | | 	     

            ∑ , , , , , ,   (2.6) 

where  

	
2
log|∑| 

1
2 1

Λ exp

 

log Λ exp log 1  

1
2

2
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2.3	Parameter	Estimation	

In this section, we propose a multivariate penalized likelihood (MPL) method for parameter 

estimation in context of the proposed joint model, which is built on the penalized partial 

likelihood depicted in Ripatti et al. 2000 for multivariate frailty model.  

 

According to Ripatti et al. 2000 and Ye et al. 2008, the complicated term  in (2.6) has 

negligible effect on the estimation of parameters ,  and random effects. So it is 

reasonable to ignore this term to simplify the computation. In addition, with the help of 

standard R package, we are able to perform the nonparametric estimation of cumulative 

baseline hazards very easily. Therefore, we ignore term  as well as  (constant) in the 

approximate log likelihood function (2.6) and use the penalized full log likelihood (term  

and ) instead of penalized partial log likelihood to estimate ,  as well as random effects 

u and v (See equation (2.7)). However, we have to keep in mind that removal of term  may 

lead to some loss of information.  

=∑ ∑ log Λ exp log 1  

        ∑       (2.7) 

For given variance components , ,  and random effects, the estimates of  

and  that maximize penalized full log likelihood (2.7) (denoted as ∗ and ∗) can be 

calculated by standard R function “glm” and “coxph”, respectively. The random effects are 

treated as offset term in each model (Ripatti et al. 2000). The cumulative baseline hazard 

function 	is estimated with nonparametric method through “coxph” and is retrieved 

using R function “basehaz”. For given variance components  and parameter estimates ∗ 

and ∗, the estimates of random effect u and v that maximize penalized full log likelihood 

(2.7) (denoted as ∗ and ∗) are computed with Newton-Raphson method. The score and 

information functions of likelihood (2.7) with respect to u and v are listed below:  

(1) Random effect  (for =1,2,.., : 

Score function:  ℓ ∑ Λ exp     (2.8) 
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Information function: ℓ ∑     (2.9) 

For , 	
ℓ

0	

(2) Random effect  (for =1,2,.., : 

Score function: ℓ ∑ 	 	 	 	 2.10  

Information function: ℓ ∑ 	 	 	 	 2.11 	

For , 
ℓ

0		 

(3) Covariance of  and  (for , =1,2,.., : 

 ℓ
	  (     (2.12) 

    	
ℓ

0        (  

By iterating between above two steps,	 the converged estimates of ,  and random effects 

	and  that maximize the penalized full log likelihood (2.7) (denoted as , 	 ,  and , 

respectively) can eventually be determined for fixed variance components .  

 

When estimating variance components , term  in (2.6) is ignored since it does not 

depend on  and can be treated as constant. In contrast to the case when estimating ,  

and random effects, the terms  and  cannot be omitted here. Conditional on , ,  

and  obtained from previous steps, the approximate profile log likelihood function for  

can be expressed as: 

; , , , , ,  

							 log	 |∑| 

											
1
2 1

Λ exp  

										 ∑ 	    (2.13) 

The estimates of variance components  that maximize profile log likelihood function (2.13) 

have closed-form (Ripatti et al. 2000), which can be written as:  

     (2.14) 
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After illustrating how to estimate each set of parameters, we now outline the strategy of the 

maximization procedure with the following three steps: (1) Initial values of variance 

components 	= ( , , ) are first assigned and corresponding random effects are 

generated. The estimates of  and  that maximize the likelihood (2.7) are calculated with 

standard R function. (2) Given the variance components and ∗ and ∗ updated from step 1, 

the estimates of random effects that maximize the likelihood (2.7) are computed with 

Newton-Raphson method. For fixed variance components, the converged estimates of ,  

and random effects can be found by iterating between step 1 and 2. (3) Given the updated 

estimates of ,  and random effects obtained from the previous two steps, the estimates of 

variance components  that maximize likelihood (2.13) are calculated based on equation 

(2.14). The maximum likelihood estimates for all parameters can then be derived by iterating 

from step1 to step 3 till convergence.   

 

2.4	Standard	Error	Estimation	

Estimates of standard errors for  and  can be easily drawn from the output of “coxph” 

and “glm” function in the last iteration when all the parameters converge. Estimation of 

standard errors for the variance components  is performed by inverting Fisher information 

matrix of likelihood function (2.13) (See attached R code for details). The three diagonal 

elements of the inverted information matrix are the estimated variances of variance 

components . It should be noted that the standard errors of parameter estimates tend to be 

underestimated using MPL algorithm. This issue will be investigated in simulation study.  

 

 

 

 

 



18 
 

Chapter 3  

Simulation Study 

In this chapter, a series of simulation studies are conducted using R software to evaluate the 

finite sample properties of the proposed method and also compare the performance of the 

proposed joint model with one reference model: separate model with centre-specific random 

effects. The influences of several factors on the performance of proposed joint model are also 

addressed: (1) magnitude of random effect variance; (2) strength of association; (3) total 

sample size; (4) number of centres; (5) high censoring rate. 

 

3.1	Numerical	Simulation	

For simplicity, only two covariates: treatment (denoted as “arm”) and remission status 

(denoted as “resp”) are considered in simulation study. In GLMM (3.1), treatment variable 

 is the only covariate; in Cox frailty model (3.2), besides treatment variable  and 

response variable , we also include the interaction term of these two variables to explore 

the interactive effect of treatment and response on patient’s survival rate.  

     1	 , , =    (3.1) 

, , ,     (3.2) 

The data are simulated as follows: (1) The centre-specific bivariate random effects  and 

 are generated from the bivariate normal distribution , ∑ , where ∑ is a 2 2 

variance-covariance matrix. (2) Conditional on , the binary response variable  is 

simulated from GLMM (3.1), where the treatment covariate  is generated from a 

Bernoulli distribution with success probability of 0.5. (3) We assume that failure time  

follows an exponential distribution and is simulated from Cox frailty model (3.2), where the 

baseline hazard is set to a constant of 0.15, and the treatment covariate , response 

covariate  and random effect  are obtained from previous two steps. According to the 
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relationship between survival function and cumulative distribution function, we know that the 

random variable 	follows uniform distribution Unif (0, 1) (denoted as ). Therefore, 

model (3.2) is rewritten in the form of (3.3), from which the failure time  can be solved. 

Censoring time  is assumed to be non-informative and is generated from uniform 

distribution Unif (0, 20) to make the censoring rate be around 20%. Let =  be 

the censoring indicator.  

log	 	 0.15 exp⁄ 	    (3.3) 

The simulated data with different parameter specifications are generated to evaluate the 

robustness of the proposed joint model. Regression coefficients , ,  are fixed with 

values of 1.0, log(2.0) and log(2.0), respectively. Total number of observations  is set  

 

Table	3.1	Summary	of	parameterizations	for	simulation	studies	 	

	

No.

1 log(0.5) log(0.5) 0.5 0.5 -0.45

2 log(0.5) log(0.5) 0.5 0.5 0.0

3 log(0.5) log(0.5) 0.5 0.5 0.45

4 log(0.5) log(0.5) 1.0 1.0 -0.9

5 log(0.5) log(0.5) 1.0 1.0 0.0

6 log(0.5) log(0.5) 1.0 1.0 0.9

7 log(0.5) log(2.0) 0.5 0.5 -0.45

8 log(0.5) log(2.0) 0.5 0.5 0.0

9 log(0.5) log(2.0) 0.5 0.5 0.45

10 log(0.5) log(2.0) 1.0 1.0 -0.9

11 log(0.5) log(2.0) 1.0 1.0 0.0

12 log(0.5) log(2.0) 1.0 1.0 0.9

13 log(2.0) log(0.5) 0.5 0.5 -0.45

14 log(2.0) log(0.5) 0.5 0.5 0.0

15 log(2.0) log(0.5) 0.5 0.5 0.45

16 log(2.0) log(0.5) 1.0 1.0 -0.9

17 log(2.0) log(0.5) 1.0 1.0 0.0

18 log(2.0) log(0.5) 1.0 1.0 0.9

19 log(2.0) log(2.0) 0.5 0.5 -0.45

20 log(2.0) log(2.0) 0.5 0.5 0.0

21 log(2.0) log(2.0) 0.5 0.5 0.45

22 log(2.0) log(2.0) 1.0 1.0 -0.9

23 log(2.0) log(2.0) 1.0 1.0 0.0

24 log(2.0) log(2.0) 1.0 1.0 0.9
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to 600 and number of centres  is set to 30. Other parameters including ,  and 

variance components , ,  take the values as summarized in Table 3.1. We try 

two different levels of magnitudes for random effect variance (0.5 or 1.0) and three different 

strengths of association between two random effects (positive, zero, negative) for each set of 

given random effect variance. A total of 500 replications are performed for each set of 

parameter combination. Selected results from representative parameter specifications are 

presented in the report and the rest are listed in Appendix 1. 

 

3.2	Simulation	Results	

Several statistics are investigated to evaluate the performance of the models: (1) Bias: the 

difference between the true value and estimated value of parameter; (2) ASE: asymptotic 

standard error of parameter estimate based on Fisher information matrix method, presented as 

the average of 500 simulations; (3) ESE: empirical standard error of parameter estimate, 

calculated by taking standard deviation of 500 parameter estimates; (4) CP: coverage 

probability of 95% confidence interval. It represents the percentage of 95% confidence 

intervals that cover the true value; (5) MSEJ/MSES: the ratio of mean square errors (MSE) 

between joint model and separate model. MSE is found by formula MSE=Bias2 + Variance, 

where variance is the square of empirical standard error (ESE). MSEJ/MSES <1 means the 

joint model yields smaller MSE than the separate model. In other words, the joint model 

performs better than the separate model. 

3.2.1 Comparison of Proposed Joint Model and Separate Model  

Two models are applied to the simulated data for comparison: (1) the proposed joint model 

incorporated with MPL inference method; (2) the separated model consisting of generalized 

linear mixed model and Cox frailty model, implemented with R functions “lme4::glmer” and 

“coxme::coxme”, respectively.   

 

Twenty-four simulation studies with different parameterizations are conducted with both joint 
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model and separate model. As an example, results for simulation study # 19 are summarized 

in Table 3.2. It is noted that in this simulation study two random effects are highly correlated 

(correlation coefficient 	= / = 0.9). The biases of estimates from both models are 

all fairly small. Compared with the separate model, the joint model produces even smaller 

biases for all of parameters except for  and therefore yields more accurate parameter 

estimates. As for the empirical standard error (ESE), we find that the value of ESE for joint 

model is a bit smaller than separate model, which suggests that the parameter estimation of 

the proposed joint model is slightly more efficient. In comparison with the separate model, 

MSE for the joint model is generally smaller (MSEJ/MSES <1). More specifically MSE is 

 

Table	3.2	Comparison	of	joint	model	and	separate	model	(based	on	500	replications)	

 

 

reduced by up to around 20% if the joint model is applied. There is no obvious difference in 

coverage probability of 95% confidence interval between two models. CP for fixed effect 

parameters from both models are all close to the nominal confidence level 95%. In joint 

model, however, CP are relatively low (around 70 to 80%) for the variance components 

(separate model does not provide CP for variance components). This finding could be 

explained by the underestimation of standard error caused by MPL algorithm. As shown in 

Table 3.2, compared with the ESE which are assumed to be trustworthy estimates of “true SE” 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.008 0.181 0.181 0.952 0.017 0.183 0.184 0.944 0.960

log(2.0) 0.009 0.151 0.160 0.948 -0.037 0.162 0.163 0.940 0.918

log(2.0) 0.007 0.120 0.126 0.936 0.012 0.125 0.133 0.942 0.885

log(2.0) -0.007 0.197 0.201 0.948 -0.010 0.206 0.213 0.940 0.891

0.5 -0.010 0.129 0.195 0.784 -0.026 0.215 0.811

0.5 -0.007 0.128 0.155 0.838 0.002 0.158 0.971

-0.45 0.009 0.120 0.145 0.844

MSEJ/MSESParameter True
Joint Model Separate Model

Cox Frailty Model

Variance Components
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(Hanley et al. 2003), ASE of fixed-effect parameter estimates are slightly smaller and it is 

more so in the case of variance components. In other words, the standard error is 

underestimated by joint model with MPL method, which leads to higher chance of type I 

error in hypothesis testing and narrower confidence interval and consequently yields lower 

CP. The underestimation is mainly because in MPL algorithm we estimate standard errors 

using only part of the likelihood function. As a result, a portion of the variation (or 

uncertainty) from unknown parameters is ignored. A similar phenomenon was also observed 

in previous literatures (Ripatti et al. 2000; Ye et al. 2008). Another possible reason for the 

poor estimation of standard error is related to Fisher information matrix method we used in 

MPL algorithm. Hsieh et al. 2006 pointed out that the application of Fisher information 

matrix in estimating standard error could be problematic due to the nonparametric nature of 

joint survival model.  

 

In the simulation study presented above, the proposed joint model has smaller bias and lower 

MSE for most of the parameter estimates than the separated model. Furthermore, ESE is also 

slightly smaller in the case of joint model. In other words, the joint model provides more 

accurate and precise parameter estimation. The main concern with the proposed joint model 

is that in some cases the ASE underestimates the true standard error, especially for the 

variance components. Some methods such as Bootstrap and Jackknife can be implemented to 

tackle this problem. More details will be given in Section 3.2.6.  

 

3.2.2 Magnitude of Random Effect Variance 

The effect of magnitude of random effect variance is explored in this section. As an example, 

the results for simulation study # 22 are presented here (Table 3.3). All the other parameters 

are kept the same as the previous section except for variance components. The values for 

,  and  are all doubled to increase the variation of the underlying effects. The 

correlation coefficient remains unchanged ( = 0.9).   
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From Table 3.3, we can see that larger variance of random effects does not obviously alter the 

performance of joint model or separate model in terms of bias, MSE or CP for all fixed-effect 

parameters. Similar to the case with a smaller variance, the MSE produced by the joint model 

are smaller than the separated model for most parameters, especially for parameter  and 

, suggesting the superior performance of joint model over separate model. The results in 

this section provide evidence that the joint model performs equally well when the magnitude 

of random effect variance is modified.  

 

Table	3.3	Simulation	results	for	data	with	larger	frailty	variance	(based	on	500	replications)	

 

3.2.3 Strength of Association 

The effect of strength of association between two random effects on model performance is 

explored in this section. We test two scenarios of association: (1) positive correlation 

=0.45 (instead of negative) (2) no correlation =0 between two random effects. As an 

example, the results for simulation study #20 and #21 are presented and compared with the 

case of negative correlation in Section 3.2.1.  

 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.027 0.185 0.172 0.960 0.004 0.190 0.202 0.952 0.744

log(2.0) 0.007 0.153 0.161 0.928 -0.068 0.168 0.170 0.926 0.775

log(2.0) 0.000 0.121 0.122 0.956 0.007 0.126 0.128 0.954 0.906

log(2.0) -0.001 0.199 0.201 0.944 0.008 0.209 0.197 0.956 1.036

1.0 -0.090 0.237 0.329 0.754 -0.026 0.361 0.885

1.0 -0.037 0.249 0.288 0.856 -0.001 0.303 0.921

-0.9 0.054 0.230 0.269 0.844

Variance Components

Cox Frailty Model

Parameter
Joint Model Separate Model

MSEJ/MSESTrue
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As shown in Table 3.4, when we change the value of covariance  from negative to 

positive, the joint model performs in a similar manner, which generates comparable 

parameter estimates and ESE as the previous case (Table 3.2). Similar to the simulation study 

with negative covariance, the proposed joint model produces less biased estimates and 

smaller MSE than the separate model in the case of positive covariance. These results 

indicate that the joint model is robust and is able to give decent estimates no matter whether 

the binary marker response is positively or negatively associated with survival data through 

joint random effects. Thus, it is possible to apply the proposed joint model to more diverse 

situations.  

 

Table	3.4	Simulation	results	for	data	with	positive	covariance	(based	on	500	replications)	

	

 

When the covariance  takes the value of 0, there is no association between binary marker 

response and survival data through joint distribution of random effects. Therefore, we assume 

that technically the joint model should have similar performance as the separate model with 

random effects. The results in Table 3.5 show that joint model and separate model give 

similar point estimates and ESE for most parameters. The joint model yields smaller MSE for 

the parameters in GLMM and variance components while the separate model gives slightly 

smaller MSE for the parameters in Cox frailty model. But in general, there is no obvious 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.007 0.181 0.180 0.960 0.017 0.183 0.182 0.952 0.967

log(2.0) 0.021 0.150 0.160 0.936 0.065 0.157 0.157 0.916 0.895

log(2.0) 0.008 0.125 0.129 0.942 -0.018 0.130 0.130 0.950 0.973

log(2.0) -0.010 0.197 0.205 0.936 0.000 0.205 0.213 0.948 0.927

0.5 -0.016 0.128 0.195 0.768 -0.028 0.201 0.928

0.5 -0.008 0.128 0.149 0.860 -0.020 0.156 0.901

0.45 -0.015 0.119 0.152 0.840

Variance Components

Cox Frailty Model

Separate Model
Parameter True

Joint Model
MSEJ/MSES
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evidence showing one model outperforms the other when the covariance  is set to 0, 

which is consistent with our hypothesis. Taken together with the results from previous few 

sections, we summarize that the advantage of the proposed joint model over separate model 

gets more pronounced as the association between two random effects gets stronger. 

 

Table	3.5	Simulation	results	for	data	with	“zero”	covariance	(based	on	500	replications)	

	

3.2.4 Total Sample Size 

To test the effect of sample size on parameter estimation with the proposed joint model, we 

simulate data with the same parameter specification as simulation study #19 but with 

different sample size. In the first step, the sample size is reduced to 150. As shown in Table 

3.6, bias, ASE and ESE of parameters for the joint model are all generally larger than the 

simulation study with larger sample size (n = 600) (Table 3.2). In the meanwhile, CP of all 

parameter estimates get slightly lower when sample size is smaller. In the condition of 

smaller sample size, however, the proposed joint model still outperforms the separate model 

in terms of bias and MSE. 

 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.020 0.179 0.178 0.956 0.013 0.183 0.181 0.958 0.981

log(2.0) 0.013 0.150 0.160 0.944 -0.012 0.159 0.154 0.968 1.090

log(2.0) 0.007 0.122 0.131 0.926 0.002 0.128 0.125 0.960 1.096

log(2.0) -0.007 0.197 0.203 0.946 0.016 0.205 0.196 0.966 1.067

0.5 -0.049 0.124 0.185 0.744 -0.022 0.196 0.934

0.5 -0.015 0.126 0.142 0.860 0.005 0.160 0.796

0.0 0.001 0.087 0.122 0.862

Cox Frailty Model

Parameter True MSEJ/MSES

Joint Model Separate Model

Variance Components
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Table	3.6	Simulation	results	for	data	with	small	sample	size	(based	on	500	replications)	

	

 

To further explore the association between sample size and performance of joint model, we 

simulate data with a series of sample sizes, ranging from 100 to 600. The number of centres 

m is set to 20 as constant. As shown in Figure 3.1, both the biases and MSE for parameters 

, ,  and  are decreased consistently as sample size increases. This observation 

indicates that increasing sample size improves the accuracy of parameter estimation as well 

as the finite sample performance of the proposed joint model. In other words, joint model 

performs better as sample size increases. Two reasons could explain this observation: (1) a 

larger sample size is able to reduce the bias if the estimator is unbiased; (2) if we hold the 

number of centres to be constant, when the total sample size increases, the number of 

observations in each centre also increases, which will improve the accuracy of Laplace 

approximation (Ripatti et al. 2000; Abrahantes et al. 2005).  

 

Note: The effect of number of centres is also investigated by holding the total number of 

patients while varying the number of centres in simulation study (see results in Appendix 2). 

No clear pattern in bias or MSE is detected as increase of centre number. Unlike the situation 

in total sample size, change of centre number (maintain the total number of patients) has 

varying effects on the performance of model. On one hand, as number of centres increases, 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.025 0.362 0.385 0.938 0.011 0.370 0.394 0.944 0.957

log(2.0) -0.021 0.308 0.351 0.916 -0.193 0.347 0.370 0.896 0.708

log(2.0) 0.013 0.244 0.276 0.924 0.021 0.272 0.288 0.938 0.917

log(2.0) 0.015 0.402 0.421 0.940 0.029 0.449 0.479 0.932 0.772

0.5 -0.002 0.144 0.314 0.620 -0.038 0.417 0.563

0.5 -0.017 0.132 0.237 0.722 -0.013 0.267 0.789

-0.45 0.050 0.120 0.219 0.668

Variance Components

Cox Frailty Model

MSEJ/MSES

Joint Model Separate Model
Parameter True
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number of patients in each centre will decrease, which reduces the accuracy of Laplace 

approximation. On the other hand, since the centre-level random effects follow normal 

distribution, a larger number of centres will give a better representation of the distribution, 

which will benefit parameter estimation. Therefore, we acclaim that it is difficult to elucidate 

the effect of centre number on model performance under the context of our proposed joint 

model and inference method. 

 

Figure	3.1	Graphic	analysis	of	correlation	between	sample	size	and	MSE	/	bias	for	four	fixed‐effect	

parameters	(A)	 	 (B)	 	 (C)	 	 (D)	 .	

 

     

      

3.2.5 High Censoring Rate  

In the simulation studies discussed above, the censoring rate was set to 20%. However, in 

some clinical trials the disease could be chronic or curable, which will lead to large 
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proportion of long-term survival and probably a high censoring rate. In this section, we test 

the performance of the proposed joint model under the condition of high censoring rate, 

which is set to around 80% (Table 3.7). Compared with the case with low censoring rate 

(Table 3.2), parameter estimates yielded by the proposed joint model are generally more 

biased when censoring rate is high. It is noteworthy that high censoring rate dramatically 

increases the ASE and ESE for the fixed-effect parameters in Cox frailty model. Overall, the 

proposed joint model produces larger bias for point estimates with lower efficiency as a result 

of high censoring. Nevertheless, in comparison with the separated model with random effects, 

performance of the proposed joint model is still superior in that it gives relatively smaller 

ESE and MSE.  

 

Table	3.7	Simulation	results	for	data	with	high	censoring	rate	(based	on	500	replications)	

	

 

3.2.6 A Special Topic: Improving SE Estimation by Jackknife 

Resampling 

Traditional approaches (e.g. ordinary least squares method) of estimating bias, variance and 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.018 0.180 0.178 0.948 0.006 0.183 0.199 0.944 0.808

log(2.0) -0.038 0.394 0.402 0.960 -0.168 0.402 0.409 0.946 0.835

log(2.0) -0.003 0.292 0.284 0.966 0.045 0.296 0.302 0.946 0.868

log(2.0) 0.026 0.460 0.456 0.958 -0.006 0.466 0.460 0.960 0.986

0.5 -0.036 0.124 0.184 0.766 -0.032 0.203 0.834

0.5 -0.026 0.127 0.198 0.764 -0.037 0.237 0.689

-0.45 0.035 0.156 0.116 0.796

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components
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confidence interval depend greatly on the modeling assumption. So the validity and reliability 

of the statistical inference will be affected by the validity of the assumption. If we assume the 

sample data as a representative of the target population we want to study, then we can make 

statistical inference based on the “resampling” method (draw sample from the sample data) 

(Efron, 1982). The resampling method does not make any assumption on the distribution. In 

addition, it provides a much easier approach to perform statistical inference such as 

estimation of standard error when complicated calculation is required in traditional methods.  

 

As discussed in early section, the true standard error is underestimated based on the proposed 

MPL algorithm because not all uncertainties are taken into account during variance 

estimation. Ripatti et al. 2000 suggested applying Bootstrap sampling as one solution. In this 

study, we first tried Bootstrap by sampling clusters with replacement, which, however, had 

convergence problem when calculating MLE of parameters (data not shown). Accordingly, 

instead of using Bootstrap, we decide to apply “delete-m Jackknife algorithm” with unequal 

m (“m” here represents the number of patients in each centre) to calculate standard errors of 

parameter estimates, which was elaborated in paper published by Busing et al. 1999. One 

hundred datasets are simulated based on the method described in Section 3.1 with 

parameterization #1 (See Table 3.1). For each dataset, observations from one out of 30 

centres are sequentially removed and the remaining observations (a subset of original dataset) 

are applied to the proposed joint model. Calculation of Jackknife SE follows the method 

described in Busing et al. 1999 (See attached R code). The results are justified by comparing 

with the empirical SE obtained from 500 simulations.  

 

Table	3.8	Comparison	of	Jackknife	SE	and	asymptotic	SE	

	

 

In Table 3.8, we compare three types of standard error: (1) ESE, empirical standard error. It is 

ESE 0.206 0.197 0.116 0.275 0.202 0.154 0.150

JK-SE 0.207 0.194 0.118 0.273 0.196 0.150 0.145

ASE 0.206 0.190 0.110 0.260 0.124 0.125 0.116

	 	 	



30 
 

considered to be a good estimate of the true SE and used as a “gold standard” here; (2) JK-SE, 

the average over 100 replications of SE calculated by Jackknife method; (3) ASE, asymptotic 

standard error estimated by MPL. As we can see from the table, the values of JK-SE for all 

parameters except  are much closer to the “gold standard” ESE than ASE. In particular, 

the estimation of standard errors for variance components, which is especially problematic in 

the case of MPL, is greatly improved by Jackknife method. Thus, we conclude that Jackknife 

resampling is able to provide decent estimates of the “true SE”, which can serve as a useful 

tool in our study to correct the underestimation of standard error caused by MPL algorithm.  
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Chapter 4  

Hodgkin’s Lymphoma Study 

In Chapter 3, we evaluated the performance of the proposed joint model and MPL algorithm. 

In this chapter, the proposed model incorporated with MPL inference method is applied to a 

clinical trial dataset from NCIC Clinical Trials Group’s Hodgkin’s lymphoma Study (Meyer 

et al. 2012) to explore the potential association between the marker response and survival 

data and detect important predictors for patients’ survival.  

 

4.1	Data	Description	and	Cleaning	

In this example, we consider the association between marker response (denoted as “resp”) 

and survival, and their relationship with the following categorical variables: (1) Treatment 

effect (denoted as “arm”. ABVD alone group=0; radiotherapy group=1). (2) Risk profile of 

patients (denoted as “risk”.  favorable risk=0; unfavorable risk=1). (3) Gender of patients 

(denoted as “sex”. Female=0; Male=1). Age is an important factor as well but we do not 

include it in the model because age effect has been integrated into the risk profile of patients 

(Meyer et al. 2005).  

 

To remove guarantee-time bias when assessing the association between treatment response 

and survival data, we implement landmark analysis. The time for evaluation of response to 

treatment is selected as “natural landmark time”, which is at the end of treatments (six 

months after the onset of randomization). Thus, among 399 patients, six of them who had 

survival time less than six months are removed from the dataset. The survival time used in 

data analysis is calculated by subtracting the time of response evaluation (six months) from 

the original survival time. Therefore, the survival data is conditional on landmark time. 

Unless specified otherwise, the model interpretation in this chapter is based on the patients 
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whose survival time, either censored or uncensored, are longer than the landmark time. 

 

We notice that “resp” values for some observations are missing. The profile of the 

observations with missing response variable is summarized in Appendix 3, where the 

potential associations between variable “arm” and the other three variables (“event”, “sex” 

and “risk”) are checked with Fisher’s exact test. The test shows that the associations between 

“arm” and other predictors are not statistically significant at 0.05 level, which indicates that 

there is no obvious unbalance between two treatment groups in terms of “event”, “sex” and 

“risk”. Therefore, a complete case analysis will be first conducted in Section 4.3 by excluding 

all the observations with missing “resp” variable. At the end of this chapter, a sensitivity 

analysis for missing data will be conducted to verify the validity of results.  

 

4.2	Test	of	Proportional	Hazards	Assumption	

In the proposed joint model, we choose Cox frailty model to analyze survival data. Before 

applying the proposed model to the clinical trial data, we need to verify the validity of using 

Cox PH model. We test the proportional hazards assumption with scaled Schoenfeld residual 

method, which is calculated easily with R function “cox.zph”. The Cox frailty model for the 

clinical trial data is constructed in the same form as described in model (3.2) except that two 

extra variables “risk” and “sex” are added into the model. Table 4.1 summarizes three 

statistics corresponding to each covariate: (1) The correlation coefficient  between 

transformed survival time (based on Kaplan-Meier estimate of the survival function) and the 

scaled Schoenfeld residuals; (2) Chi-square value; (3) Two-sided p-value. It is clear that 

p-values for all the covariates are insignificant at 0.05 level, indicating no violation of 

proportional hazards assumption.  

 

Under the PH assumption, Schoenfeld residuals are independent of time. Therefore if PH 

assumption is valid, the plot of Schoenfeld residuals against time should show random pattern 

and the corresponding fitted line should be roughly a straight line with zero slope. In 
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Appendix 4, scaled Schoenfled residuals for four covariates and one interaction term in Cox 

frailty model are plotted against the transformed survival time with a smoothing-spline fitted 

line. As we can see, in each plot residuals are randomly distributed and slope of fitted line is 

roughly around zero, which further confirms the compliance of PH assumption. 

 

Table	4.1	Test	of	proportional	hazards	assumption	 	
Parameter  Chisq p-value

Resp 0.208 1.330 0.249 

Arm -0.183 1.094 0.296 

Risk 0.074 0.166 0.684 

Sex 0.052 0.090 0.765 

Resp  Arm 0.090 0.250 0.617 

 

4.3	Data	Analysis	and	Model	Interpretation	

The proposed joint model is then fitted to the data and the joint inference approach MPL is 

applied to calculate the point estimates for regression coefficients and frailty variance 

components. As discussed in simulation studies, standard errors of parameters (especially 

variance components) are underestimated by MPL algorithm. Therefore, in addition to MPL 

algorithm, we also apply Jackknife method to estimate the standard errors. 

 

The parameter estimates based on joint model (EST), standard errors and P-values calculated 

through MPL or Jackknife are summarized in Table 4.2. We can see that compared with ASE 

calculated directly by MPL, JK-SE for most of the fixed-effect parameters are mildly larger 

and for variance components 	= , ,  are dramatically larger. As a result, more 

parameters are classified to be statistically “insignificant” if Jackknife method is used.  

Based on the simulation study in Section 3.2.6, this observation suggests that Jackknife 

method applied here could probably be able to correct the underestimation of standard errors 

caused by MPL algorithm. Considering that Jackknife method generally produces more 

accurate estimates of standard errors, in the following sections we will only focus on the 
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results generated from Jackknife method. As shown in Table 4.2, covariate “arm” in the 

GLMM and covariate “resp” in Cox frailty model are highly significant. “risk” variable is 

marginally significant at level of 0.05 (p-value=0.06), whereas none of other covariates or 

variance components are statistically significant. It is noted that in HD.6 clinical trial the 

censoring rate is extremely high (around 91%), which, according to the simulation study in 

Section 3.2.5, could partly explain the large standard error estimates we observed here, 

especially for the parameters in Cox frailty model.  

 

Table	4.2	Results	of	data	analysis	with	proposed	joint	model	

	

 

Based on the above results, the fitted joint model is presented as in Table 4.3. Due to the 

presence of interaction term in the second sub-model, the Cox frailty model is split into two 

scenarios by treatment group to facilitate the model interpretation (Arm=0: ABVD alone 

group; Arm=1: radiotherapy group).  

 

ASE P-value JK-SE JK P-value

GLMM

Arm 1.359 0.397 0.0006 0.370 0.0002

Risk -0.077 0.386 0.8412 0.436 0.8592

Sex 0.126 0.349 0.7181 0.399 0.7524

Cox Frailty Model

Resp -2.389 0.711 0.0008 0.674 0.0004

Arm 0.059 0.822 0.9432 1.044 0.9552

Risk 1.908 0.733 0.0092 1.030 0.0639

Sex 0.660 0.399 0.0985 0.467 0.1575

Resp  Arm 1.721 1.030 0.0946 1.336 0.1976

0.122 0.052 – 0.160 –

0.351 0.144 – 0.476 –

-0.201 0.084 0.0166 0.268 0.4535

Parameter EST
MPL Jackknife 

Variance components

	

	

†

†

†

†

†

†
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In GLMM, compared with ABVD-alone group, radiotherapy group significantly increases the 

chance of remission after completion of treatment (odds ratio: 3.89, 95% CI: [1.88, 8.04]). 

Effects of “risk” and “sex” are not statistically significant in GLMM, implying that the risk 

profile and the gender of patients have no obvious influence on treatment response. 

 

Table	4.3	Joint	model	for	Hodgkin’s	lymphoma	study	
 

Parameter 

 

GLMM 

Cox Frailty Model 

Arm = 0 Arm = 1 

Arm 1.359  Ref. 0.059  

Resp –  -2.389  -0.667  

Risk -0.077  1.908  1.908  

Sex 0.126  0.660  0.660  

 

In the case of Cox frailty model, the interpretation of “resp” variable is conducted in two 

different scenarios: (1) In ABVD alone group, the treatment response (remission / no 

remission) is significantly correlated to hazard rate. The hazard ratio for remission is 0.09, 

which indicates that if the patient in ABVD alone group showed the complete remission at 

the end of treatment, the hazard rate would drop by as much as 91%. (2) In radiotherapy 

group, the hazard ratio for remission equals to 0.51, which, however, is not statistically 

significant (p-value=0.37). Based on the proposed model, response to treatment is an 

important predictive factor for hazard rate and its effect tends to be more pronounced in 

ABVD alone group than in radiotherapy group. However, we have to keep in mind that the 

different magnitudes of hazard ratio regarding treatment response between two treatment 

groups may not be true since the effect of interaction term is not statistically significant 

(p-value=0.20). On the other hand, in Cox frailty model the treatment effect is not significant 

(p-value=0.96), suggesting that there is no obvious difference in hazard rate (or survival rate) 

between two treatment groups. The “risk” effect is marginally significant, suggesting that 

there is a trend towards a higher hazard rate (or lower survival rate) for the patients with 

unfavorable risk profile compared with the ones with favorable risk profile. In the Cox frailty 

model, “sex” effect is not important in predicting survival of patients. 
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The joint random effects represent the centre-specific unobservable factors that could 

contribute to determine treatment response and survival rate. The correlation coefficient  

explains the association between response to treatment and survival through the joint random 

effects. It could be considered as a “residual association” in addition to the association 

established through regression in Cox frailty model, which, taken together, explain the “true 

association” between these two endpoints. In this example, the covariance of two random 

effects is -0.201 and the correlation coefficient  equals to -0.97, which implies that the 

two random effects tend to be correlated in a negative manner. That being said, it should be 

noted that in this example due to the large standard errors, the effects of variance components 

are not statistically significant and therefore the association between two endpoints through 

joint random effects is negligible. 

 

Note: It is common practice to conduct model selection for regular statistical model in data 

analysis. However, this issue has not been fully understood in the context of joint modeling. 

Some classic model selection criteria such as AIC cannot be easily applied to the joint model 

due to the presence of nonparametric baseline hazard (Li et al. 2010). For this reason, we will 

not address the model selection issue in this study. 

 

4.4	Sensitivity	Analysis	

As a simple form of sensitivity analysis, extreme case analysis of the missing data is 

conducted to evaluate the robustness of the results obtained from the previous section. The 

landmark time is kept the same as before (six months after randomization); among those 

observations that had survival time longer than six months, instead of eliminating the missing 

response values from the dataset, we set all the missing values to either “Yes” (remission) or 

“No” (no remission). The new sets of data are analyzed with the proposed joint model, the 

results of which are thereafter compared with the one described in Section 4.3 (see Table 4.2 

and Appendix 5 and 6). It is noticeable that variable “arm” in GLMM and “resp” in Cox 

frailty model show significant effects in all three scenarios (variable “arm” is marginally 
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significant when the missing values are set to “No”). Compared with the first study (Table 

4.2), “risk” variable and/or interaction term in Cox frailty model become statistically 

significant in the latter two studies. Nevertheless, most of covariates and variance 

components in all three scenarios show similar pattern with slightly different magnitudes. In 

general, the sensitivity analysis supports the conclusion made in earlier section.   
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Chapter 5  

Summary and Future Directions 

In this project, we construct a joint model of binary marker response and survival data. A 

modified joint inference method which is denoted as multivariate penalized likelihood (MPL) 

method based on the previous paper is developed. The performance of the proposed joint 

model and MPL method is evaluated with extensive simulation studies and then applied to an 

actual dataset generated from NCIC Clinical Trials Group’s HD.6 clinical trial.  

  

If the clinical trial involves multiple endpoints (e.g. early response to the treatment and time 

to event) and there is a reason to believe that those processes are associated, it is worthwhile 

to apply joint model to minimize the bias and improve the efficiency in statistical inference. 

Most of existing joint models discussed in literatures are focusing on the joint analysis of 

longitudinal measurement and survival data, which are usually linked with the shared random 

effects or the joint distribution of random effects. In this study, two new features are 

incorporated into the proposed joint model. Firstly, instead of dealing with longitudinal data, 

we explore the possibility for joint analysis of binary response and survival data. Secondly, in 

the proposed joint model the binary marker response and survival are connected through two 

paths: regression in Cox frailty model and joint random effects. The association between 

these two endpoints, therefore, is explained by both observed and unobserved (latent) effects, 

the latter of which, in our case, is the centre-level random effects. One thing we would like to 

highlight here is the use of cluster-level random effects rather than individual-level random 

effects in the proposed model. Under the structure of binary outcome, it is not possible to 

make inference for the individual random effects in the linear predictor (Lancaster et al. 

2004). The creative implementation of centre-level random effects in the proposed joint 

model bypasses the obstacle.  

 

Multivariate penalized likelihood (MPL) inference technic introduced in this report 



39 
 

circumvents the intractable integration in maximum likelihood analysis by utilizing Laplace 

approximation, followed by maximizing the likelihood function with respect to fixed-effect 

parameters, random effects (treated as parameters) and variance components in a sequential 

manner till all estimates converge. According to the previous study (Ye et al. 2008), the 

inference method based on penalized joint likelihood was computing much faster that EM 

algorithm and the performances of these two methods were comparable. In our case, on 

average it only took around 4 hours to run simulation with 500 replications under CPU Intel 

Xeon at 2.53 GHz. One limitation of MPL is that the two-step nature in maximization process 

underestimates the underlying variation, which causes the poor estimation of standard errors. 

Thus, we implement Jackknife method and the results indicate that it could greatly improve 

the estimation of standard errors, especially for the frailty variance components. Therefore, 

Jackknife method can be used together with MPL algorithm when reasonably accurate SE 

estimates are required.  

 

Performance of the proposed joint model is compared with the separate model with random 

effects in simulation studies. When the covariance of random effects in the simulated data is 

set to zero to mimic the situation of no association between two sub-models, the overall 

performances of joint model and separate model are pretty comparable, and the joint model 

does not display any obvious benefit. However, when we increase the strength of association, 

no matter whether it is positive or negative, the joint model starts to show some preferable 

features over separate model: (1) It reduces the bias in estimates of fixed-effect parameters 

and variance components. (2) It decreases mean square error (MSE) and therefore increases 

the efficiency for parameter estimation. (3) It produces slightly smaller empirical SE, which 

means more precise estimation and higher power. (4) It provides a decent estimation for 

frailty covariance, which is not available in the case of separate model. On the other hand, 

there is no obvious difference between joint model and separate model in terms of coverage 

probability (CP) of 95% confidence interval. Performance of the proposed joint model is 

improved when the total sample size increases, evidenced by decreased bias and MSE; when 

the censoring rate is higher, the joint model yields more biased estimates with lower 

efficiency. Nevertheless, under these conditions, the proposed joint model consistently 
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outperforms the separate model.  

 

Followed the simulation studies, we fit the proposed joint model to HD.6 clinical trial data 

where the potential association between treatment response (remission / no remission) and 

survival rate over 12 years period is of the main interest. Jackknife resampling is adopted to 

correct for the underestimation of standard errors caused by MPL algorithm. The joint model 

successfully detects the positive correlation between the marker response and survival 

through regression. Therefore, we can conclude that the response to treatment (remission / no 

remission) could be used as a potential surrogate for patient’s survival. On the other hand, the 

“residual association” between these two endpoints through joint random effects is not 

statistically significant. This is related to the large standard errors of parameter estimates, 

which could be partly explained by the high censoring rate in this clinical trial study. In 

addition, some previous papers pointed out that the accuracy of Laplace approximation tends 

to be positively associated with the number of observations in each cluster (centre) (Ripatti et 

al. 2000; Abrahantes et al. 2005). As we have noticed, for some centres in the clinical trial 

study, there were only one or two patients, which may affect the Laplace approximation and 

as a result lead to less accurate parameter estimation.  

 

In summary, the proposed joint model with MPL provides a computationally efficient and 

reasonably advantageous approach to jointly analyze binary marker response and survival 

data. It gives a better fitting than the separate model with random effects, particularly when 

there is a strong association between the binary response and survival data through joint 

random effects. In addition, the proposed joint model is capable of detecting the association 

between two endpoints at both fixed-effect and random-effect levels. However, the poor 

estimation of standard error with MPL algorithm could be problematic and needs to be 

corrected by other methods, such as Jackknife resampling.  

 

Several related topics can be further explored in the future work. (1) One of the main 

advantages for MPL algorithm we proposed in this report is the easy computation. It is a good 

choice to test the new model within relatively short time period. However, as we can see from 
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the results, MPL method could underestimate the true SE of parameter estimates especially 

for the variance components and the Laplace approximation may not be appropriate when the 

number of observations per centre is low. An alternative inference method is EM algorithm. 

Although previous literature showed that the performance of the penalized joint likelihood 

was comparable to EM algorithm, this observation shall be explored in the context of our 

proposed joint model. In the future work, it may be worthwhile to apply EM algorithm to the 

proposed joint model and compare the performance with MPL algorithm. But it should be 

noted that the intensive computation of EM algorithm could be a potential problem. (2) The 

proposed MPL algorithm can be easily extended to other joint models with different 

modelling structures. One potential research direction is to study its performance in the 

context of joint model with response endpoint follow an ordinal distribution or a Poisson 

distribution. Similarly, instead of using normally-distributed multivariate random effects in 

the joint model, we can extend the application of MPL algorithm to the joint model with 

random effects follow other types of distributions such as Gamma distribution. (3) As we can 

see from the clinical trial data explored in this study, the censoring rate is extremely high 

(around 91%), which could be related to the high cure rate of Hodgkin’s lymphoma. Song et 

al. 2012 suggested implementing cure model to handle the survival time with cure fraction. In 

the future, it may be worth it to substitute the Cox frailty model used in this project with the 

cure model to see if the fitting of joint model can be further improved for the Hodgkin’s 

lymphoma data. (4) When analyzing the data from HD.6 clinical trial study, we only 

considered limited number of potential covariates for simplicity and demonstration purpose. 

In addition, we did not explore possible interaction effects such as risk versus treatment or 

risk versus response. All of these factors may influence model fitting and interpretation. 

Therefore, more work is required to further understand the association of survival with 

treatment response and other predictive factors in HD.6 clinical trial. 
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Appendix 

Appendix	1.	 	

Results of simulation studies with different parameter specifications 

Simulation #1

 

 

Simulation #2

 

 

 

 

 

 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) -0.002 0.206 0.206 0.938 0.003 0.209 0.201 0.960 1.049

log(0.5) 0.001 0.190 0.197 0.946 -0.065 0.197 0.210 0.934 0.807

log(2) 0.002 0.110 0.116 0.946 -0.002 0.116 0.113 0.958 1.043

log(2) -0.012 0.260 0.275 0.952 0.003 0.269 0.281 0.938 0.960

0.5 -0.032 0.124 0.202 0.724 -0.022 0.227 0.806

0.5 -0.020 0.125 0.154 0.838 -0.006 0.156 0.979

-0.45 0.030 0.116 0.150 0.806

Variance Components

Joint Model Separate Model
MSEJ/MSES

Cox Frailty Model

Parameter True

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.029 0.204 0.201 0.950 -0.004 0.209 0.211 0.950 0.927

log(0.5) 0.010 0.179 0.182 0.954 0.007 0.187 0.181 0.962 1.011

log(2.0) 0.006 0.112 0.123 0.918 0.004 0.117 0.124 0.936 0.977

log(2.0) -0.010 0.248 0.258 0.944 0.009 0.258 0.259 0.952 0.995

0.5 -0.059 0.125 0.199 0.704 -0.049 0.220 0.847

0.5 -0.017 0.126 0.142 0.858 0.000 0.150 0.912

0.0 0.005 0.086 0.126 0.818

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components

Cox Frailty Model
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Simulation #3 

 

 

Simulation #4 

 

 

Simulation #5 

 

 

 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.017 0.206 0.203 0.950 -0.006 0.209 0.209 0.950 0.952

log(0.5) 0.015 0.170 0.180 0.930 0.047 0.180 0.178 0.942 0.955

log(2.0) 0.011 0.114 0.123 0.926 0.011 0.119 0.118 0.954 1.082

log(2.0) -0.013 0.239 0.247 0.938 0.023 0.249 0.247 0.940 0.990

0.5 -0.013 0.129 0.207 0.730 -0.037 0.233 0.774

0.5 -0.008 0.128 0.149 0.856 -0.015 0.155 0.923

0.45 -0.014 0.120 0.150 0.844

Separate Model
MSEJ/MSESParameter True

Joint Model

Variance Components

Cox Frailty Model

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) -0.002 0.207 0.200 0.948 0.005 0.212 0.209 0.954 0.914

log(0.5) -0.006 0.196 0.213 0.932 -0.062 0.203 0.215 0.934 0.901

log(2.0) 0.000 0.111 0.116 0.940 -0.005 0.117 0.119 0.946 0.953

log(2.0) 0.002 0.265 0.293 0.924 0.001 0.274 0.291 0.940 1.016

1.0 -0.091 0.238 0.351 0.730 -0.053 0.367 0.954

1.0 -0.045 0.247 0.286 0.860 -0.019 0.296 0.954

-0.9 0.062 0.228 0.276 0.824

Joint Model Separate Model
MSEJ/MSES

Variance Components

Cox Frailty Model

Parameter True

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.012 0.205 0.197 0.954 -0.005 0.211 0.215 0.950 0.838

log(0.5) 0.001 0.176 0.200 0.922 -0.019 0.189 0.190 0.946 1.105

log(2.0) 0.000 0.115 0.118 0.940 0.005 0.121 0.118 0.950 1.004

log(2.0) -0.003 0.244 0.267 0.926 0.030 0.255 0.247 0.952 1.154

1.0 -0.174 0.224 0.325 0.668 -0.059 0.411 0.790

1.0 -0.038 0.249 0.272 0.896 0.021 0.330 0.686

0.0 -0.006 0.164 0.202 0.902

Joint Model Separate Model
MSEJ/MSES

Variance Components

Cox Frailty Model

Parameter True
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Simulation #6 

 

 

Simulation #7 

 

 

Simulation #8 

 

 

 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.024 0.208 0.199 0.960 0.012 0.212 0.214 0.942 0.877

log(0.5) 0.010 0.165 0.175 0.946 0.048 0.178 0.188 0.922 0.818

log(2.0) 0.009 0.118 0.125 0.930 0.006 0.123 0.120 0.972 1.084

log(2.0) -0.010 0.231 0.248 0.934 0.020 0.242 0.252 0.938 0.962

1.0 -0.066 0.244 0.339 0.790 -0.023 0.401 0.739

1.0 -0.019 0.254 0.279 0.864 0.002 0.303 0.851

0.9 -0.033 0.235 0.271 0.870

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) -0.002 0.206 0.207 0.938 -0.004 0.210 0.213 0.944 0.940

log(2.0) -0.002 0.151 0.163 0.942 -0.065 0.161 0.165 0.934 0.843

log(2.0) 0.003 0.111 0.115 0.944 0.001 0.116 0.118 0.940 0.944

log(2.0) -0.005 0.223 0.232 0.934 0.020 0.233 0.233 0.946 0.988

0.5 -0.031 0.124 0.202 0.726 -0.017 0.227 0.801

0.5 -0.017 0.126 0.152 0.864 -0.014 0.148 1.059

-0.45 0.026 0.116 0.150 0.808

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.029 0.204 0.201 0.950 0.023 0.209 0.205 0.954 0.973

log(2.0) 0.012 0.150 0.160 0.942 0.006 0.159 0.162 0.950 0.982

log(2.0) 0.006 0.112 0.122 0.930 -0.008 0.117 0.117 0.956 1.083

log(2.0) -0.010 0.221 0.229 0.948 0.024 0.232 0.227 0.950 1.005

0.5 -0.059 0.125 0.199 0.702 -0.030 0.234 0.778

0.5 -0.017 0.126 0.143 0.862 0.023 0.163 0.763

0.0 0.005 0.086 0.125 0.822

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components
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Simulation #9 

 

 

Simulation #10 

 

 

Simulation #11 

 

 

 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.014 0.206 0.203 0.950 0.017 0.209 0.210 0.950 0.930

log(2.0) 0.009 0.149 0.155 0.934 0.051 0.157 0.158 0.928 0.879

log(2.0) 0.000 0.114 0.122 0.942 0.007 0.119 0.114 0.956 1.135

log(2.0) 0.008 0.221 0.227 0.938 0.024 0.230 0.237 0.938 0.912

0.5 -0.031 0.125 0.203 0.712 -0.014 0.239 0.733

0.5 -0.025 0.123 0.149 0.838 -0.001 0.151 1.002

0.45 -0.032 0.115 0.150 0.778

Cox Frailty Model

Joint Model Separate Model
MSEJ/MSES

Variance Components

Parameter True

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.024 0.208 0.212 0.936 -0.011 0.211 0.220 0.940 0.938

log(2.0) 0.003 0.153 0.170 0.912 -0.059 0.167 0.164 0.934 0.948

log(2.0) -0.001 0.111 0.116 0.944 0.001 0.117 0.124 0.934 0.866

log(2.0) 0.008 0.222 0.228 0.928 0.018 0.233 0.232 0.950 0.961

1.0 -0.080 0.241 0.352 0.738 -0.014 0.419 0.738

1.0 -0.044 0.247 0.299 0.844 0.010 0.301 1.005

-0.9 0.052 0.230 0.282 0.836

Cox Frailty Model

Joint Model Separate Model
MSEJ/MSES

Variance Components

Parameter True

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.038 0.206 0.211 0.932 -0.029 0.212 0.213 0.940 0.994

log(2.0) 0.007 0.149 0.168 0.916 0.008 0.162 0.167 0.944 1.010

log(2.0) -0.001 0.114 0.123 0.942 -0.003 0.120 0.118 0.962 1.098

log(2.0) 0.009 0.218 0.232 0.936 0.014 0.229 0.229 0.954 1.025

1.0 -0.174 0.224 0.321 0.670 -0.038 0.374 0.944

1.0 -0.053 0.245 0.275 0.858 0.015 0.301 0.861

0 -0.017 0.162 0.190 0.900

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components

	

	
	
	

	

	



50 
 

Simulation #12 

 

 

Simulation #13 

 

 

Simulation #14 

 

 

 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(0.5) 0.012 0.207 0.206 0.946 0.014 0.212 0.223 0.936 0.852

log(2.0) 0.007 0.149 0.155 0.942 0.042 0.159 0.157 0.958 0.911

log(2.0) -0.005 0.118 0.119 0.956 0.004 0.123 0.124 0.940 0.912

log(2.0) 0.012 0.216 0.225 0.932 0.019 0.227 0.225 0.942 0.996

1.0 -0.079 0.241 0.360 0.752 -0.025 0.399 0.848

1.0 -0.047 0.247 0.282 0.840 0.013 0.302 0.898

0.9 -0.052 0.230 0.277 0.834

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.006 0.181 0.186 0.946 0.007 0.183 0.193 0.942 0.925

log(0.5) -0.008 0.190 0.197 0.928 -0.055 0.196 0.205 0.924 0.858

log(2.0) 0.001 0.120 0.124 0.936 0.010 0.125 0.114 0.966 1.168

log(2.0) 0.004 0.231 0.242 0.942 0.000 0.239 0.245 0.934 0.978

0.5 -0.031 0.124 0.190 0.740 -0.021 0.199 0.929

0.5 -0.021 0.125 0.162 0.816 -0.004 0.156 1.101

-0.45 0.027 0.116 0.151 0.810

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.019 0.179 0.184 0.944 0.001 0.183 0.181 0.938 1.042

log(0.5) -0.005 0.179 0.183 0.932 0.005 0.186 0.197 0.938 0.864

log(2.0) -0.001 0.122 0.127 0.946 0.003 0.128 0.124 0.964 1.045

log(2.0) 0.005 0.222 0.230 0.938 0.005 0.229 0.239 0.936 0.932

0.5 -0.067 0.120 0.182 0.700 -0.014 0.218 0.784

0.5 -0.027 0.123 0.149 0.842 0.016 0.163 0.848

0.0 -0.003 0.084 0.111 0.882

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components
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Simulation #15 

 

 

Simulation #16 

 

 

Simulation #17 

 

 

 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.007 0.181 0.187 0.940 0.003 0.183 0.184 0.936 1.035

log(0.5) 0.000 0.170 0.175 0.932 0.068 0.179 0.187 0.912 0.772

log(2.0) 0.003 0.124 0.130 0.938 -0.004 0.130 0.133 0.954 0.957

log(2.0) -0.001 0.215 0.225 0.934 -0.013 0.223 0.234 0.948 0.924

0.5 -0.033 0.123 0.192 0.738 -0.022 0.210 0.850

0.5 -0.023 0.124 0.152 0.830 0.004 0.162 0.894

0.45 -0.029 0.115 0.149 0.786

Parameter True
Joint Model Separate Model

MSEJ/MSES

Cox Frailty Model

Variance Components

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.010 0.186 0.187 0.954 0.008 0.190 0.197 0.946 0.904

log(0.5) -0.008 0.196 0.209 0.930 -0.070 0.204 0.221 0.934 0.815

log(2.0) 0.001 0.120 0.130 0.932 -0.001 0.127 0.133 0.942 0.955

log(2.0) 0.006 0.237 0.256 0.938 0.014 0.245 0.256 0.930 0.997

1.0 -0.095 0.236 0.337 0.756 -0.014 0.334 1.094

1.0 -0.050 0.246 0.301 0.824 -0.014 0.299 1.038

-0.9 0.061 0.227 0.281 0.830

Parameter True
Joint Model Separate Model

MSEJ/MSES

Cox Frailty Model

Variance Components

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.024 0.184 0.184 0.956 0.000 0.190 0.194 0.962 0.909

log(0.5) -0.004 0.177 0.191 0.926 -0.012 0.190 0.194 0.946 0.967

log(2.0) 0.001 0.124 0.136 0.934 -0.008 0.131 0.137 0.932 0.991

log(2.0) 0.003 0.222 0.240 0.942 0.022 0.231 0.251 0.922 0.904

1.0 -0.158 0.224 0.312 0.704 -0.026 0.365 0.912

1.0 -0.057 0.244 0.276 0.854 -0.006 0.293 0.922

0.0 -0.011 0.163 0.190 0.924

Cox Frailty Model

Parameter True
Joint Model Separate Model

MSEJ/MSES

Variance Components

	

	
	
	

	

	



52 
 

Simulation #18 

 

 

Simulation #23 

 

 

Simulation #24 

 

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.005 0.186 0.196 0.946 0.010 0.190 0.195 0.938 1.007

log(0.5) 0.010 0.165 0.175 0.946 0.059 0.178 0.190 0.918 0.777

log(2.0) 0.009 0.129 0.131 0.956 -0.008 0.136 0.146 0.934 0.804

log(2.0) -0.008 0.212 0.214 0.946 0.002 0.221 0.234 0.936 0.839

1.0 -0.057 0.246 0.334 0.782 -0.033 0.391 0.746

1.0 -0.018 0.254 0.282 0.874 -0.001 0.328 0.742

0.9 -0.032 0.236 0.276 0.862

Cox Frailty Model

Joint Model Separate Model
MSEJ/MSES

Variance Components

Parameter True

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.017 0.184 0.184 0.952 -0.003 0.189 0.194 0.948 0.903

log(2.0) 0.004 0.149 0.167 0.920 0.003 0.162 0.165 0.954 1.019

log(2.0) -0.004 0.125 0.123 0.964 0.002 0.131 0.135 0.944 0.833

log(2.0) -0.004 0.196 0.202 0.938 0.010 0.206 0.209 0.956 0.929

1.0 -0.145 0.228 0.313 0.712 -0.018 0.386 0.797

1.0 -0.049 0.246 0.280 0.856 0.009 0.298 0.908

0.0 -0.002 0.166 0.212 0.910

Cox Frailty Model

Joint Model Separate Model
MSEJ/MSESParameter

Variance Components

True

	

	
	
	

	

	

Bias ASE ESE CP Bias ASE ESE CP

GLMM

log(2.0) -0.004 0.186 0.196 0.944 -0.008 0.190 0.193 0.944 1.037

log(2.0) 0.016 0.151 0.159 0.944 0.061 0.159 0.153 0.946 0.940

log(2.0) 0.009 0.129 0.130 0.956 -0.007 0.135 0.132 0.960 0.975

log(2.0) -0.015 0.197 0.198 0.946 -0.001 0.207 0.200 0.952 0.992

1.0 -0.057 0.246 0.334 0.788 -0.020 0.371 0.829

1.0 -0.017 0.254 0.279 0.872 -0.002 0.301 0.865

0.9 -0.032 0.236 0.275 0.866

Cox Frailty Model

Joint Model Separate Model
MSEJ/MSESParameter True

Variance Components
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Appendix	2.	 	

Absolute bias and MSE for joint model when number of centres takes different values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 0.000 0.006 0.001 0.024 0.036 0.039 0.013 0.072

30 0.002 0.001 0.002 0.012 0.043 0.039 0.013 0.076

40 0.003 0.026 0.005 0.023 0.042 0.040 0.013 0.076

60 0.018 0.012 0.006 0.001 0.044 0.043 0.014 0.081

100 0.008 0.021 0.009 0.011 0.045 0.042 0.015 0.071

Absolute Bias MSENumber of
Centres 		 	 		 	 	 	
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Appendix	3.	 	

Characterization of patients with missing response data 

 

Arm 

Event Sex Risk 

Censored Uncensored Female Male High Low 

A 22 2 12 12 12 12 

B 16 3 5 14 13 6 

P-value 0.6404 0.1327 0.351 
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Appendix	4.	 	

Graphic analysis of proportional hazards assumption using Schoenfeld residuals 
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Appendix	5.	 	

Sensitivity analysis 1: Set all missing value to “Yes” 

 

 

 

 

 

 

 

 

 

 

 

 

ASE P-value JK-SE JK P-value

GLMM

Arm 1.394 0.395 0.000 0.374 0.0002

Risk -0.118 0.383 0.758 0.457 0.7967

Sex 0.194 0.346 0.576 0.407 0.6339

Cox Frailty Model

Resp -2.050 0.612 0.001 0.603 0.0007

Arm 0.005 0.823 0.995 1.015 0.9962

Risk 2.082 0.730 0.004 0.888 0.0190

Sex 0.569 0.368 0.122 0.446 0.2018

Resp  Arm 1.365 0.961 0.156 1.158 0.2384

0.078 0.036 – 0.111 –

0.328 0.137 – 0.433 –

-0.154 0.066 0.020 0.208 0.4584

Variance components

Parameter EST
MPL Jackknife 

	

	

†

†

†

†

†

†

†
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Appendix	6.	 	

Sensitivity analysis 2: Set all missing value to “No” 

 

 

 

 

 

 

 

 

 

 

ASE P-value JK-SE JK P-value

GLMM

Arm 0.479 0.259 0.064 0.264 0.0693

Risk 0.297 0.273 0.276 0.249 0.2323

Sex -0.084 0.261 0.746 0.252 0.7378

Cox Frailty Model

Resp -2.318 0.678 0.001 0.589 0.0001

Arm -0.327 0.615 0.594 0.551 0.5522

Risk 2.102 0.729 0.004 0.888 0.0179

Sex 0.476 0.366 0.193 0.428 0.2664

Resp  Arm 2.134 0.873 0.015 0.623 0.0006

0.031 0.017 – 0.055 –

0.331 0.139 – 0.435 –

-0.093 0.042 0.026 0.147 0.5244

Variance components

Parameter EST
MPL Jackknife 

	

††

†

†

†

†

†
	

†
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R Code 

library(survival) 

#### Function "rnormal" generates random effects u and v from bivariate normal distribution 

library(mnormt) 

rnormal<-function (ncentre,var_u,var_v,cov_uv) { 

  var_cov<-matrix(c(var_u,cov_uv, cov_uv, var_v),2,2) 

  ran<-rmnorm(ncentre,mean=c(0,0),varcov=var_cov) 

  return (ran) 

} 

 

#### Function "MPL_step1" updates beta, gamma and random effects (treated as parameters) 

## Include additional covariates if other potential predictors are of interest 

MPL_step1<-function (max.iter,tol,n,u,v,ncentre,u_p,v_p,c_matrix,var_v, var_u, cov_uv,resp,  

                     arm, event, time) { 

  ##update beta and gamma with standard R functions "glm" and "coxph" 

  logi<-glm(resp~as.factor(arm)+offset(u_p),family=binomial) 

  beta<-as.numeric(logi$coefficients)  

  se.beta<-as.numeric(summary(logi)$coefficients[,2]) 

  ph<-coxph(Surv(time, event)~as.factor(resp)+as.factor(arm)+as.factor(resp)*as.factor(arm)+ 

              offset(v_p)) 

  gamma<-as.numeric(ph$coefficients) 

  se.gamma<-as.numeric(summary(ph)$coefficients[,3]) 

  ##baseline hazard for each observation was obtained by basehaz 

  df1<-as.data.frame(time) 

  df2<-as.data.frame(basehaz(ph, center=F))   

  df<-merge(df1,df2,by="time") 

  lambda<-df$hazard 

  lambda<-sort(lambda,decreasing=TRUE)  

  ##update u and v with N-R 

  s_u<-vector();i_u<-vector();s_v<-vector();i_v<-vector() 

  u_new<-vector(); v_new<-vector();list_info<-list()   

  flag <- 0 

  for (x in 1:max.iter){ 

    cur=c(u,v)     

    uv_centre<-cbind(u,v) 

    uv_p<-c_matrix%*%uv_centre 

    u_p<-uv_p[,1];v_p<-uv_p[,2]    

    ##calculate score and information for u 

    X1=cbind(1, arm) 

    eb = exp(X1%*%beta+u_p) 

    eb1 = eb/(1+eb) 

    s_u = resp - eb1   
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    i_u = -1*eb1*(1-eb1)  

    ##calculate score and information for v 

    X2 = cbind(resp, arm, resp*arm) 

    exp_all = lambda*exp(X2%*%gamma+v_p) 

    s_v = event - exp_all   

    i_v = -1*exp_all      

    ##calculate centre-specific score/information function for u and v 

    dinv = 1/(var_u*var_v-cov_uv^2) 

    s_u_c<-t(c_matrix)%*%s_u-(u*var_v-v*cov_uv)*dinv; i_u_c<-t(c_matrix)%*%i_u-var_v*dinv 

    s_v_c<-t(c_matrix)%*%s_v- (v*var_u-u*cov_uv)*dinv; i_v_c<-t(c_matrix)%*%i_v-var_u*dinv 

    cov_12<-cov_uv/(var_u*var_v-cov_uv^2) 

    A<-t(c_matrix)%*%i_u; B<-t(c_matrix)%*%i_v     

    ##update u and v 

    for (e in 1:ncentre) { 

      uv<-cbind(u[e],v[e]);score<-cbind(s_u_c[e], s_v_c[e]) 

      info<-matrix(c(i_u_c[e],cov_12,cov_12,i_v_c[e]),2,2,byrow=TRUE) 

      inverse<-solve(info) 

      uv_new<-uv-score%*%inverse 

      u_new[e]<-uv_new[1];v_new[e]<-uv_new[2] 

      list_info[[e]]<-inverse 

    } 

    new=c(u_new, v_new) 

    # Stop iteration if difference between current and new estimates is less than tol 

    if( max(abs(cur - new)) < tol){ flag <- 1; break}    

    else{u<-u_new;v<-v_new} 

  }  

  return (list(u=u_new, v=v_new, beta=beta, gamma=gamma,list_info=list_info, 

               se.beta=se.beta,se.gamma=se.gamma,A=A,B=B)) 

} 

 

#### Function "MPL_step2" finds the MLE of beta, gamma and random effects  

#### given variance components 

MPL_step2 <- function(max.iter,tol,n,u,v,ncentre,c_matrix, var_v, var_u, cov_uv, beta, gamma, 

                      resp, arm, event, time){ 

  flag <- 0   

  for(k in 1:max.iter){ 

    cur <- c(u,v,beta,gamma)    

    ###assign the random effect value to each patient (uv_p means uv_patient) 

    uv_centre<-cbind(u,v) 

    uv_p<-c_matrix%*%uv_centre 

    u_p<-uv_p[,1];v_p<-uv_p[,2]     

    new_step <- MPL_step1(max.iter,tol,n,u,v,ncentre,u_p,v_p,c_matrix,var_v, var_u, cov_uv, 

                          resp, arm, event, time) 

    u <- new_step$u; v <- new_step$v; 
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    beta <- new_step$beta 

    gamma <- new_step$gamma 

    new <- c(u,v,beta, gamma) 

    # Stop iteration if difference between current and new estimates is less than tol 

    if( max(abs(cur - new)) < tol){ flag <- 1; break}    

  } 

  if(!flag) warning("Not converge\n")  

  li_info<-new_step$list_info 

  se.beta<-new_step$se.beta; se.gamma<-new_step$se.gamma 

  A<-new_step$A; B<-new_step$B 

  return(list(u=u,v=v,beta=beta,gamma=gamma,li_info=li_info, 

              se.beta=se.beta,se.gamma=se.gamma,A=A,B=B)) 

} 

 

#### Function "MPL_step3" finds MLE of variance components when fixing the other parameter  

#### and iterates between step1~ step3 till all parameter estimates converge  

MPL_step3<-function (max.iter2,tol2, n, ncentre,resp, arm, event, time,centre) { 

  ##assign initial values to unknown parameters 

  var_u<- 0.5; var_v<-0.5; cov_uv<- 0.01 

  beta<-c(-1,0.5);gamma<-c(0.5,1,-1) 

  max.iter<-1000 

  tol<-0.0001   

  ran<-normal(ncentre, var_u,var_v,cov_uv) 

  u<-ran[,1]; v<-ran[,2]   

  ###create the matrix which indicates the centre ID for each patient 

  c_matrix<-matrix(rep(0,n*ncentre),n,ncentre) 

  for (i in 1:n){ 

    for (j in 1:ncentre){ 

      if (as.numeric(centre[i])==j) {c_matrix[i,j]=1} 

    } 

  }   

  for (l in 1:max.iter2){ 

    cur2 <- c(var_u,var_v,cov_uv,beta, gamma)    

    data1<-MPL_step2(max.iter,tol,n,u,v,ncentre,c_matrix, var_v, var_u, cov_uv,beta, gamma, 

                     resp, arm, event, time) 

    u <- data1$u; v <- data1$v; 

    beta <- data1$beta 

    gamma <- data1$gamma     

    ##update variance components 

    l_info<-data1$li_info 

    mat_sum<-Reduce('+',l_info) 

    matrix1<-rbind(u,v) 

    matrix_uv<-(matrix1%*%t(matrix1)-mat_sum)/ncentre    

    var_u<-matrix_uv[1,1];var_v<-matrix_uv[2,2];cov_uv<-matrix_uv[1,2]     
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    new2 <- c(var_u,var_v,cov_uv,beta, gamma)    

    # Stop iteration if difference between current and new estimates is less than tol 

    if( max(abs(cur2 - new2)) < tol2 ){ flag <- 1; break} 

  } 

  if(!flag) warning("Not converge\n")  

  se.beta<-data1$se.beta 

  se.gamma<-data1$se.gamma   

  ####manual calculation of variance of variance components using Fisher information 

  A<-data1$A; B<-data1$B 

  a<-var_u;b<-var_v;c<-cov_uv 

  K<-A*B*(a*b-c^2)^2-B*(a*b-c^2)*b-A*(a*b-c^2)*a+(a*b-c^2) 

  Iaa<-ncentre*b^2/(2*(a*b-c^2)^2)+ 

       1/2*sum((B*b^2+A*c^2-b)*(A*B*(2*a*b^2-2*b*c^2)-B*b^2-(2*a*b-c^2)*A+b)/(K^2))- 

       1/2*sum((v^2*c^2+u^2*b^2-2*u*v*b*c)*(2*a*b^2-2*b*c^2)/((a*b-c^2)^4)) 

  Ibb<-ncentre*a^2/(2*(a*b-c^2)^2)+ 

       1/2*sum((B*c^2+A*a^2-a)*(A*B*(2*b*a^2-2*a*c^2)-A*a^2-(2*a*b-c^2)*B+a)/(K^2))- 

       1/2*sum((u^2*c^2+v^2*a^2-2*u*v*a*c)*(2*b*a^2-2*a*c^2)/((a*b-c^2)^4)) 

  Icc<-ncentre*(a*b+c^2)/((a*b-c^2)^2)+sum(((B*b+A*a-1)*K-(B*b*c+A*a*c-c)* 

       (A*B*(4*c^3-4*a*b*c)+2*B*b*c+2*A*a*c-2*c))/(K^2))-sum(((u^2*b+v^2*a-2*u*v*c)* 

       (a*b-c^2)^2-(u^2*b*c+v^2*a*c-u*v*a*b-u*v*c^2)*(4*c^3-4*a*b*c))/((a*b-c^2)^4)) 

  Iab<-ncentre*c^2/(2*(a*b-c^2)^2)-1/2*sum(((2*B*b-1)*K-(B*b^2+A*c^2-b)* 

       (A*B*(2*b*a^2-2*a*c^2)-A*a^2-(2*a*b-c^2)*B+a))/(K^2))+1/2*sum(((2*u^2*b-2*u*v*c)* 

       (a*b-c^2)^2-(v^2*c^2+u^2*b^2-2*u*v*b*c)*(2*b*a^2-2*a*c^2))/((a*b-c^2)^4)) 

  Iac<-ncentre*(-1)*b*c/((a*b-c^2)^2)-1/2*sum((2*A*c*K-(B*b^2+A*c^2-b)* 

       (A*B*(4*c^3-4*a*b*c)+2*B*b*c+2*A*a*c-2*c))/(K^2))+1/2*sum(((2*v^2*c-2*u*v*b)* 

       (a*b-c^2)^2-(v^2*c^2+u^2*b^2-2*u*v*b*c)*(4*c^3-4*a*b*c))/((a*b-c^2)^4)) 

  Ibc<-ncentre*(-1)*a*c/((a*b-c^2)^2)-1/2*sum((2*B*c*K-(B*c^2+A*a^2-a)* 

       (A*B*(4*c^3-4*a*b*c)+2*B*b*c+2*A*a*c-2*c))/(K^2))+1/2*sum(((2*u^2*c-2*u*v*a)* 

       (a*b-c^2)^2-(u^2*c^2+v^2*a^2-2*u*v*a*c)*(4*c^3-4*a*b*c))/((a*b-c^2)^4)) 

  Iabc<-(-1)*matrix(c(Iaa,Iab, Iac, Iab, Ibb, Ibc, Iac, Ibc, Icc),3,3, byrow=TRUE) 

  inv_Iabc<-solve(Iabc) 

  var_sig<-c(inv_Iabc[1,1],inv_Iabc[2,2],inv_Iabc[3,3]) 

  return(list(var_u=var_u,var_v=var_v,cov_uv=cov_uv,beta=beta,gamma=gamma, 

              se.beta=se.beta, se.gamma=se.gamma,var_sig=var_sig)) 

}  

 

#### Function "simu.joint" first generates simulated data and then applies the joint model  

#### (with MPL) to the data 

simu.joint <- function (n, ncentre, b0,b1, g1, g2, g3, sigma_u, sigma_v, sigma_uv, nsimu) { 

  n=n 

  ncentre=ncentre 

  max.iter2=10000 

  tol2=0.00001  

  v_u<-vector();v_v<-vector(); covuv<-vector() 
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  beta_list<-list(); gamma_list<-list() 

  sebeta<-list();segamma<-list() 

  se_v_u<-vector();se_v_v<-vector();se_covuv<-vector()  

  n_beta1=0; n_beta2=0; n_gamma1=0;n_gamma2=0;n_gamma3=0 

  n_var_u=0; n_var_v=0; n_covuv=0   

  ##set the initial values for all the parameters that will be estimated  

  sim_beta<-c(b0, b1) 

  sim_gamma<-c(g1, g2, g3) 

  sim_sigma<-c(sigma_u, sigma_v, sigma_uv) 

  sim_var_u=sim_sigma[1];sim_var_v=sim_sigma[2];sim_cov_uv=sim_sigma[3]   

  ##generate centre ID 

  sim_centre = rep(c(1:ncentre), n/ncentre) 

  sim_centre<-as.factor(sim_centre) 

  ###ct_matrix records the centre information for all the patients 

  ct_matrix<-matrix(rep(0,n*ncentre),n,ncentre) 

  for (i in 1:n){ 

    for (j in 1:ncentre){ 

      if (as.numeric(sim_centre[i])==j) {ct_matrix[i,j]=1} 

    } 

  }   

  for (s in 1:nsimu) { 

    centre = rep(c(1:ncentre), n/ncentre) 

    centre<-as.factor(centre) 

    ##generate center-specific random effect u and v 

    ran<-rnormal(ncentre,sim_var_u,sim_var_v,sim_cov_uv) 

    u<-ran[,1]; v<-ran[,2] 

    ##assign centre ID to each patient 

    uv_centre<-cbind(u,v) 

    uv_p<-ct_matrix%*%uv_centre 

    u_p<-uv_p[,1];v_p<-uv_p[,2] 

    arm<-rbinom(n,size=1,prob=0.5)    ##simulate "arm" variable   

    sim_X1<-cbind(1, arm)     

    ##simulate resp variable 

    za<-exp(sim_X1%*%sim_beta+u_p) 

    resp = rbinom(n, 1, za/(1+za))   

    ##simulate the survival time 

    ##assume in baseline hazard lambda=0.15, p=1 (Follow exponential distribution) 

    ranuni<-runif(n,min=0,max=1) 

    sim_X2<-cbind(resp, arm, resp*arm) 

    stime<-log(ranuni)/exp(sim_X2%*%sim_gamma+v_p)/(-0.15) 

    endstudy = runif(n,0, 20)   ###make the censoring rate around 20% 

    event = ifelse(stime>endstudy, 0, 1)  

    time = ifelse(stime>endstudy, endstudy, stime)     

    ##put all data in a data frame and sort the data based on survival time 
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    dat = data.frame(time, event, resp,arm,centre) 

    st = sort(dat$time, decr = T, index = T) 

    idx = st$ix 

    dat = dat[idx, ] 

    time<-dat$time; event<-dat$event 

    resp<-dat$resp; arm<-dat$arm; centre<-dat$centre  

    ####calculate parameter estimates with MPL method 

    simu<-MPL_step3(max.iter2,tol2, n, ncentre,resp, arm, event, time,centre) 

    v_u[s]<-simu$var_u;v_v[s]<-simu$var_v; covuv[s]<-simu$cov_uv 

    beta_list[[s]]<-simu$beta; gamma_list[[s]]<-simu$gamma 

    sebeta[[s]]<-simu$se.beta; segamma[[s]]<-simu$se.gamma 

    se_v_u[s]<-sqrt(simu$var_sig[1]);se_v_v[s]<-sqrt(simu$var_sig[2]) 

    se_covuv[s]<-sqrt(simu$var_sig[3])     

    ###calculate the coverage probability of confidence interval at 95% level 

    if (sim_beta[1]>=beta_list[[s]][1]-qnorm(0.975)*sebeta[[s]][1] &  

        sim_beta[1]<=beta_list[[s]][1]+qnorm(0.975)*sebeta[[s]][1])  

       {n_beta1=n_beta1+1} 

    if (sim_beta[2]>=beta_list[[s]][2]-qnorm(0.975)*sebeta[[s]][2] &  

        sim_beta[2]<=beta_list[[s]][2]+qnorm(0.975)*sebeta[[s]][2])  

       {n_beta2=n_beta2+1} 

    if (sim_gamma[1]>=gamma_list[[s]][1]-qnorm(0.975)*segamma[[s]][1] &  

        sim_gamma[1]<=gamma_list[[s]][1]+qnorm(0.975)*segamma[[s]][1])  

       {n_gamma1=n_gamma1+1} 

    if (sim_gamma[2]>=gamma_list[[s]][2]-qnorm(0.975)*segamma[[s]][2] &  

        sim_gamma[2]<=gamma_list[[s]][2]+qnorm(0.975)*segamma[[s]][2])  

       {n_gamma2=n_gamma2+1} 

    if (sim_gamma[3]>=gamma_list[[s]][3]-qnorm(0.975)*segamma[[s]][3] &  

        sim_gamma[3]<=gamma_list[[s]][3]+qnorm(0.975)*segamma[[s]][3])  

       {n_gamma3=n_gamma3+1}     

    if (sim_var_u>=v_u[s]-qnorm(0.975)*se_v_u[s] & sim_var_u[1]<=v_u[s]+ 

        qnorm(0.975)*se_v_u[s])  

       {n_var_u=n_var_u+1} 

    if (sim_var_v>=v_v[s]-qnorm(0.975)*se_v_v[s] & sim_var_v<=v_v[s]+ 

        qnorm(0.975)*se_v_v[s])  

       {n_var_v=n_var_v+1} 

    if (sim_cov_uv>=covuv[s]-qnorm(0.975)*se_covuv[s] &  

        sim_cov_uv<=covuv[s]+qnorm(0.975)*se_covuv[s])  

       {n_covuv=n_covuv+1}     

    n_beta<-c(n_beta1, n_beta2); n_gamma<-c(n_gamma1,n_gamma2,n_gamma3) 

    n_sigma<-c(n_var_u, n_var_v, n_covuv) 

  } 

  return(list(v_u=v_u,v_v=v_v,covuv=covuv,beta_list=beta_list,gamma_list=gamma_list, 

         sebeta=sebeta,segamma=segamma, se_v_u=se_v_u,se_v_v=se_v_v,se_covuv=se_covuv, 

         n_beta=n_beta, n_gamma=n_gamma, n_sigma=n_sigma, tru_beta=sim_beta,  
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         tru_gamma=sim_gamma, tru_sigma=sim_sigma)) 

} 

 

#### Function "datasum" summarizes the results from joint modeling 

datasum<-function (result, nsimulation) { 

  parameter<-c("beta1","beta2",  "gamma1","gamma2","gamma3","var_u", "var_v", "cov_uv") 

  ##true parameter values 

  true<-c(result$tru_beta,result$tru_gamma, result$tru_sigma)   

  ##calculate the estimates of parameter 

  var_u<-sum(result$v_u)/nsimulation 

  var_v<-sum(result$v_v)/nsimulation 

  cov_uv<-sum(result$covuv)/nsimulation 

  beta<-Reduce('+',result$beta_list)/nsimulation 

  gamma<-Reduce('+',result$gamma_list)/nsimulation 

  est<-c(beta,gamma,var_u, var_v, cov_uv)   

  ##calculate the bias 

  bias<-est-true   

  ##calculate empirical S.E. for beta, gamma and variance components 

  ese<-vector() 

  beta1<-vector(); beta2<-vector();beta3<-vector();beta4<-vector(); 

  gamma1<-vector();gamma2<-vector();gamma3<-vector();gamma4<-vector();gamma5<-vector()   

  for (i in 1:nsimulation) { 

    beta1[i]<-result$beta_list[[i]][1] 

    beta2[i]<-result$beta_list[[i]][2] 

    gamma1[i]<-result$gamma_list[[i]][1] 

    gamma2[i]<-result$gamma_list[[i]][2] 

    gamma3[i]<-result$gamma_list[[i]][3] 

  }   

  ese[1]<-sd(beta1);ese[2]<-sd(beta2) 

  ese[3]<-sd(gamma1);ese[4]<-sd(gamma2);ese[5]<-sd(gamma3) 

  ese[6]<-sd(result$v_u); ese[7]<-sd(result$v_v);ese[8]<-sd(result$covuv)  

  ##calculation of asymptotical SE for beta, gamma and variance components  

  se.beta<-Reduce('+',result$sebeta)/nsimulation 

  se.gamma<-Reduce('+',result$segamma)/nsimulation 

  se.v_u<-sum(result$se_v_u)/nsimulation; se.v_v<-sum(result$se_v_v)/nsimulation  

  se.cov_uv<-sum(result$se_covuv)/nsimulation 

  se<-c(se.beta, se.gamma, se.v_u, se.v_v, se.cov_uv)   

  ##calculate coverage probability 

  count<-c(result$n_beta, result$n_gamma, result$n_sigma) 

  CP<-count/nsimulation   

  output<-data.frame (parameter, true, est, bias, ese, se, CP) 

  return (output) 

} 
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#### Functions "glmer" and "coxme" are used to model binary marker response and  

#### survival data with random effects separately 

library(coxme) 

library(lme4) 

###fit generalized mixed effect model  

fit1<-glmer(resp~as.factor(arm)+(1 | centre),family = binomial) 

##find estimates for beta and var_u and s.e for beta 

beta<-fixef(fit1) 

var_u<-as.numeric(VarCorr(fit1)) 

se_beta<-sqrt(diag(vcov(fit1))) 

### fit Cox PH model with random effect  

fit2<-coxme(Surv(time, event)~as.factor(resp)+as.factor(arm)+ 

            as.factor(resp)*as.factor(arm)+(1|centre)) 

##find estimates for gamma and var_v and SE for gamma 

gamma<-fit2$coefficients 

var_v<-fit2$vcoef$centre 

se_gamma<-sqrt(diag(vcov(fit2))) 

  

 

#### Delete-a-group Jackknife resampling  

for (s in 1:sim_ncentre) {  

  ##each time remove one centre from the dataset 

  data<-subset(dat, dat$centre!=s) 

  st = sort(data$time, decr = T, index = T) 

  idx = st$ix 

  dataJK = data[idx, ] 

  time<-dataJK$time 

  event<-dataJK$event 

  resp<-dataJK$resp 

  arm<-dataJK$arm 

  ###convert 28 centres into 1~28 ID scale 

  centre<-as.factor(as.numeric(as.factor(dataJK$centre)))     

  n=nrow(dataJK) 

  ncentre<-nlevels(centre) 

}  

 

#### Function "JK" calculates the Jackknife standard error   

## "result" is the output of joint modeling using jackknife samples 

## "jointfull" is the output of joint modeling using whole dataset 

JK<-function (result, jointfull, ncentre, nsimulation,n) { 

  beta_matrix<-do.call(rbind, result$beta_list) 

  gamma_matrix<-do.call(rbind, result$gamma_list) 

  var.u<-result$v_u; var.v<-result$v_v;cov.uv<-result$covuv 

  p_matrix<-cbind(beta_matrix, gamma_matrix, var.u,var.v,cov.uv)   
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  ##find the number of patients in each centre 

  c_matrix<-matrix(rep(0,n*ncentre),n,ncentre) 

  for (i in 1:n){ 

    for (j in 1:ncentre){ 

      if (as.numeric(centre[i])==j) {c_matrix[i,j]=1} 

    } 

  }   

  p_centre<-t(c_matrix)%*%rep(1,n)   

  full<-c(jointfull[[4]],jointfull[[5]],jointfull[[1]],jointfull[[2]],jointfull[[3]]) 

  weight<-1-p_centre/n 

  ###JK estimate of parameter 

  JK_est<-as.vector(ncentre*full-t(p_matrix)%*%weight)   

  ##estimate JK variance (based on the paper by Busing et al. 1999) 

  h<-n/p_centre 

  pseudo<-h%*%t(full)-as.vector(h-1)*p_matrix 

  JK_matrix<-matrix(rep(JK_est,ncentre),ncentre, 8, byrow=TRUE) 

  JK_variance<-1/ncentre*t((pseudo-JK_matrix)^2)%*%(1/(h-1)) 

  JK_se<-as.vector(sqrt(JK_variance)) 

  return (JK_se) 

} 

 

####Graphic analysis of correlation between sample size and MSE / bias 

bias<-read.table("D:/Practicum project/data/bias_size1.csv",sep=",",header=T) 

colnames(bias) <- c("size","beta0","beta1","gamma1","gamma2","gamma3","var_u","var_v","cov_uv") 

mse<-read.table("D:/Practicum project/data/mse_size1.csv",sep=",",header=T) 

colnames(mse) <- c("size","beta0","beta1","gamma1","gamma2","gamma3","var_u","var_v","cov_uv") 

##beta1 

par(mar=c(5.1,4.1,2.1,4.1)) 

plot(bias$size,abs(bias$beta1),type="o",pch=16,ylim=c(0,0.07),xlab="Sample Size",  

     ylab="Absolute Bias",col="blue") 

axis(2, pretty(c(0,0.07)), col="blue") 

par(new=TRUE) 

plot(mse$size, mse$beta1,type="o",pch=2,lty=2,xlab=" ", ylab=" ", ylim=c(0,0.7), col="red",axes=F) 

axis(4, pretty(c(0,0.7)), col="red") 

mtext("MSE",side=4,line=1,padj=2) 

legend(420, 0.7, legend=c("Absolute Bias", "MSE"), pch=c(16,2),col=c("blue", "red"),bty="n",cex=1) 

text(120,0.68, "A") 

##gamma1 

par(mar=c(5.1,4.1,2.1,4.1)) 

plot(bias$size,abs(bias$gamma1),type="o",pch=16,ylim=c(0,0.07),xlab="Sample Size",  

     ylab="Absolute Bias",col="blue") 

axis(2, pretty(c(0,0.07)), col="blue") 

par(new=TRUE) 

plot(mse$size, mse$gamma1,type="o",pch=2,lty=2,xlab=" ", ylab=" ", ylim=c(0,0.7), col="red",axes=F) 
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axis(4, pretty(c(0,0.7)), col="red") 

mtext("MSE",side=4,line=1,padj=2) 

legend(420, 0.7, legend=c("Absolute Bias", "MSE"), pch=c(16,2),col=c("blue", "red"),bty="n",cex=1) 

text(120,0.68, "B") 

##gamma2 

par(mar=c(5.1,4.1,2.1,4.1)) 

plot(bias$size,abs(bias$gamma2),type="o",pch=16,ylim=c(0,0.07),xlab="Sample Size",  

     ylab="Absolute Bias",col="blue") 

axis(2, pretty(c(0,0.07)), col="blue") 

par(new=TRUE) 

plot(mse$size, mse$gamma2,type="o",pch=2,lty=2,xlab=" ", ylab=" ", ylim=c(0,0.7), col="red",axes=F) 

axis(4, pretty(c(0,0.7)), col="red") 

mtext("MSE",side=4,line=1,padj=2) 

legend(420, 0.7, legend=c("Absolute Bias", "MSE"), pch=c(16,2),col=c("blue", "red"),bty="n",cex=1) 

text(110,0.68, "C") 

##gamma3 

par(mar=c(5.1,4.1,2.1,4.1)) 

plot(bias$size,abs(bias$gamma3),type="o",pch=16,ylim=c(0,0.07),xlab="Sample Size",  

     ylab="Absolute Bias",col="blue") 

axis(2, pretty(c(0,0.07)), col="blue") 

par(new=TRUE) 

plot(mse$size, mse$gamma3,type="o",pch=2,lty=2,xlab=" ", ylab=" ", ylim=c(0,0.7), col="red",axes=F) 

axis(4, pretty(c(0,0.7)), col="red") 

mtext("MSE",side=4,line=1,padj=2) 

legend(420, 0.7, legend=c("Absolute Bias", "MSE"), pch=c(16,2),col=c("blue", "red"),bty="n",cex=1) 

text(110,0.68, "D") 

 

#### ABVD clinical trial data and data cleaning 

abvd<-read.table("D:/Practicum project/data/JointModel with center.csv",sep=",", skip=1) 

colnames(abvd) <- c("arm", "sex", "age", "centre","resp", "risk", "time", "event") 

miss<-abvd[is.na(abvd$resp),] 

miss$event<-as.factor(miss$event) 

summary(miss) 

###delete all the observation with missing resp value 

abvd<-abvd[!is.na(abvd$resp),] 

##remove all the data with survival time less than 6 month 

abvd<-subset(abvd,time>=6) 

###convert categorical variable to numeric variable 

########note: arm A=abvd + radiation; arm B=abvd alone############## 

arm<-ifelse(abvd$arm=="A", 1,0)     ##abvd alone=0; abvd+radiation=1 

resp<-ifelse(abvd$resp=="YES", 1,0)   ##remission=1, no remission=0 

event<-as.numeric(abvd$event) 

time<-abvd$time-6 

centre<-as.factor(as.numeric(abvd$centre))    ##there are 29 centres in total 
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risk<-ifelse(abvd$risk=="High", 1,0)  

sex<-ifelse(abvd$sex=="M", 1,0) 

###rearrange the dataset in the descending order of survival time 

dat = data.frame(time, event, resp,arm,risk, sex, centre) 

st = sort(dat$time, decr = T, index = T) 

idx = st$ix 

dat = dat[idx, ] 

time<-dat$time; event<-dat$event; resp<-dat$resp; arm<-dat$arm 

risk<-dat$risk; sex<-dat$sex; centre<-dat$centre 

 

###Test PH assumption using Schoenfeld residuals 

coxmodel<-coxph(Surv(time, event)~resp+arm+risk+sex+resp*arm) 

phtest<-cox.zph(coxmodel, transform="km", global=TRUE) 

par(mfrow=c(3,2),mar=c(4,4,2,2)) 

plot(phtest)  
 

 


