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Chapter 1 

Introduction 

Regression models are often used to estimate the relationship between a set of covariates, 

denoted , and a response variable, denoted . When the response variable is time to some 

event, survival analysis (or time-to-event analysis) is used to analyze and predict data. In survival 

analysis,  could be the survival time of a patient recently diagnosed with a particular disease. 

 will contain information on the patient’s age, sex, stage of disease at diagnosis and other 

covariates that could be related to the patient’s survival time. Most regression analysis work 

involves estimating model parameters and associated confidence intervals for each covariate to 

determine their effects on the response variable (Lawless, 2003). 

In survival analysis, the response variable  (or time to event variable) is usually subject 

to censoring. More specifically, right censoring is very common in survival analysis data; one 

type of right censoring is when the time to event is greater than the length of observation. When 

right censoring occurs, the exact time to event is unknown due to reasons such as people dropping 

out of the study, loss to follow-up, or study termination (Lawless & Yuan, 2010). For a dataset 

with censoring distribution, a censoring indicator  is used to indicate whether censoring has 

occurred or not. Let  be the time to event for the th observation and let  be the censoring 

time. 

; 

 if the subject is censored and  if the subject is uncensored. In this report, we will 

assume that the censoring distribution is independent of the times to event and the associated 

covariates (Graf, Schmoor, Sauerbrei, & Schumacher, 1999). 

 Survival models are often used to form the basis of predictions relating to patient 

survival. An example of the use of survival analysis models is when physicians wish to categorize 

newly diagnosed patients into risk groups based on various features of the patients. The survival 

analysis model would take into account several features (covariates) and will form a time to event 

(usually death in survival analysis) related prediction. It is important to assess the accuracy of 
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these predictions; this will help to determine if the “right” model is being used, or the “right” 

prediction method (Lawless et al, 2010). 

 Another set of models used in survival analysis are mixture cure models. These models 

are used when a sizable portion of the population of interest are subject to censoring even with 

long-term follow-up. This fraction of the population is considered to be cured and no longer at 

risk of experiencing the event of interest (Farewell, 1982). Mixture cure models incorporate both 

the cure fraction and the survival function for the uncured proportion of the population. They are 

used to form predictions relating to patient survival for diseases which have cures (Yu & Peng, 

2008) (Peng, Taylor & Yu, 2007). 

Because of the use of survival models and mixture cure models for forming predictions, 

prediction error or predictive accuracy of these models is also of interest to statisticians. This 

measure determines how accurate the prediction method is and indicates if changes need to be 

made (i.e. more or less covariates are needed or parameter estimates need to be modified or if a 

different model needs to be used).  

One field in which predictive accuracy has been given much attention has been oncology. 

Predictive accuracy is important in this field for three main reasons: 1) it could influence 

treatment decisions for each individual; 2) it could contribute to the efficiency of health care 

programs; 3) the accuracy of predictions could assist patients and their families in making 

personal decisions with regards to their disease (Mackillop & Quirt, 1997). 

This area has been researched greatly in regards to survival models, but there has been no 

work looking into the predictive accuracy of predictions made based on mixture cure models. For 

this project, we will be exploring predictive accuracy measurements for mixture cure models. We 

will be using two predictive accuracy measures that are used for survival models and will apply 

them to mixture cure models. Doing so will allow us to assess the usefulness of mixture cure 

models for forming predictions as well as the performance of the predictive accuracy measures 

for mixture cure models. 
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Chapter 2 

Background 

Survival Models 
There are common models which are often used to model survival rates of a given 

population. Methods of statistical analysis can be parametric or semi- or non-parametric. 

Parametric methods are used when the form of the risk (hazard) function is assumed, whereas 

semi- or non-parametric methods are used when you do not assume complete knowledge about 

the risk. 

A common non-parametric method of estimating , which is the 

probability of survival until time , is the Kaplan-Meier estimate. Given a set of censored and 

uncensored observations, let  denote the th distinct censored or uncensored observation. The 

Kaplan-Meier estimate of  is given by: 

 
where  is the number of patients at risk of experiencing the event before time  and  are the 

number that experienced the event at time . Based on this estimate, the survival function 

decreases whenever a subject experiences the event of interest (Tableman & Kim, 2004). Plots of 

this estimate, known as Kaplan-Meier curves, are often used to demonstrate the survival rates of 

populations. 

The simplest parametric regression models are based on the exponential and Weibull 

distributions. The survival function for the exponential distribution is: 

, 

where  is either a constant or an expression based on a set of covariates, . The survival 

function for the Weibull distribution is: 

, 
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where  is a constant and again,  is either a constant or an expression based on a set of 

covariates, . Typically, for the exponential and Weibull distributions, , where 

 is a set of coefficients for the covariates, . 

The most common semi-parametric regression model is the Cox proportional hazards 

(Cox PH) model. This model is semi-parametric because the baseline hazard function is not 

specified. The survival function takes on the formula 

. 

Rather than absolute risk, Cox PH models estimate relative risk and also assume that the relative 

risk stays constant over time. 

Mixture Cure Models 
The presence of a cured group in a population is generally indicated by the Kaplan-Meier 

curves levelling off at a value greater than 0 – meaning that a sizable fraction of the population is 

right-censored near the end of the observation time (Peng, Dear & Carriere, 2001). 

The general form of the survival function of the mixture cure model (the probability of 

surviving until time ) is: 

. 

In this function,  is the proportion of uncured individuals in the population, which can be 

dependent on a set of covariates  and  is the survival function for the uncured 

individuals. The variables  and  are sets of covariates associated with the survival rates of the 

uncured population and with the cure rate, respectively. The survival rate of the uncured fraction 

tends to 0 as time approaches infinity (Farewell, 1982). On the other hand,  corresponds 

to the fraction of cured individuals who are considered to not be at risk of experiencing the event 

of interest (Farewell, 1982). 

Predictions Using Survival Models 
 In the standard prediction procedure, we wish to make a prediction about the response 

variable  (for example, time to death) based on a set of given covariates  (for example, 

age and sex of the patient). We take a random sample  from the 

population;  is known as the training data, and predictions for the rest of the population are 



 

5 

 

made based on this data. There are two main types of predictions: point and distributional 

predictors (Lawless et al, 2010). 

 Distributional predictors uses the training data  to obtain  which estimates 

, the cumulative distribution function for the survival distribution. 

This would, in turn, give the estimate of the survival function .  is of the form 

;  are the estimates of the parameters of the distribution, derived from the training data. 

 Point predictors give a predicted value  for .  is a value derived 

based on a set of covariates, , from the test data, and a set of parameters , which are 

derived from the training data. Some common point predictors are the mean  and median 

 of .  

 An example of the use of distributional and point predictors is in the case of a newly 

diagnosed cancer patient. The distributional predictor would be the probability of the patient 

surviving 1 year (or however many years are of interest). The point predictor, on the other hand, 

would be the estimated survival time of the patient (Lawless et al, 2010). 

Prediction Error/Predictive Accuracy 
The usefulness of survival models in forming predictions has been highly debated. 

Predicting the duration of survival for individual patients has been shown to be less accurate than 

using patient-specific survival probabilities as predictions (Graf et al, 1999). 

 Loss functions  are used to assess the accuracy of a point predictor . Squared 

error loss  and absolute error loss  are two common loss functions. The expected 

value of these loss functions is equal to the predictive accuracy of point predictors (Lawless et al, 

2010). 

There is no method for measuring predictive accuracy of predictive distributions that is 

commonly agreed upon by statisticians (Schumacher, Graf & Gerds, 2003). For distributional 

predictors, the most common prediction error used is the expected Brier score (EBS). For survival 

status at time , 

 



 

6 

 

where  is an indicator function for the survival status at time  and  is the 

distributional predictor for the probability of survival to time  (Lawless et al, 2010).  The 

expectation is taken with respect to . If , then the prediction model is considered 

perfect. If there is no knowledge about the disease of interest, a trivial prediction of  

is used for every event – this corresponds to a Brier score of 0.25 (or poor predictive accuracy) 

(Graf et al, 1999). This formula compares individual vital status at a certain time point with 

predicted survival probabilities of that time. This score has been shown to be useful and has a 

meaningful interpretation even when the survival model is mis-specified. The Brier score can be 

computed at any time point at which there is at least one patient that is event-free and predicted 

survival probabilities are available for that time. Use of this score allows for the comparison of 

various regression models used to form predictions as well as assessing the effect of a specific 

covariate on patient survival time (Schumacher et al, 2003). 

 One of the main problems with calculating Brier score for survival data is the presence of 

censored observations. Few works have dealt with the effects of censoring on assessing prediction 

error (Lawless et al, 2010). Because these patients either drop out of the study, are lost to follow-

up, or never experience the event of interest during the course of the study, it is difficult to 

incorporate them into the Brier score calculation, not knowing what their survival status is at a 

given time point (Schumacher et al, 2003). One of the options for dealing with censored data 

would be to simply eliminate those observations from the dataset when calculating the Brier score 

(Graf et al, 1999). We call this option to be the naïve estimate of the expected Brier score and it 

will be calculated according to this formula:  

                                                   
(Error! Reference source not found.) 

The survival status of observations censored before  is unknown, so these observations are 

eliminated from the dataset.  is then the number of observations which failed before time  

and all observations which had an event occur or were censored after time . 

Another way to deal with censored observations is to incorporate a weighting scheme 

into the expected Brier score calculation, to account for the loss of information due to censoring. 

Graf et al developed a weighted Brier score which is based on an inverse probability of censoring 
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weighting scheme. Graf’s weighted Brier score divides the population of interest into three 

categories. Let  represent the observed failure time for patient ,  be a certain fixed time 

point for which we want to assess the predictive accuracy and  be the censoring indicator, as 

explained previously. The three categories of patients are as follows (Graf et al, 1999): 

Category 1:  and ; 

Category 2:  and  or ; 

Category 3:  and . 

The patients in the first category are the uncensored patients who experience the event of interest 

before the fixed time . The second category consists of all the censored and uncensored 

patients who experience the event of interest or are censored after the fixed time . The third 

category is of all the patients that were censored before . 

 The inverse probability of censoring weighting scheme is used for Graf`s Brier score. 

 denotes the Kaplan-Meier estimate of the censoring distribution, based on . The 

weight of  is applied to patients in category 1. Observations from category 2 get a weight of 

. 

 The weighted Brier score proposed by Graf et al is then: 

     

   (2) 

 With this estimation of the Brier score, all observations in category 1 contribute the 

weights  and all observations in category 2 contribute the weights . The indicator 

functions allow only observations in categories 1 and 2 to contribute their estimated survival 

probabilities, . The event status of patients in category 3 at time  is unknown. 

Therefore, this category makes no contribution to the weighted Brier score. The weights are 

included in order to compensate for the loss of information due to censoring. If there was no 
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censoring, the Graf estimate would reduce to the naïve estimate of the Brier score (Graf et al, 

1999). 

Prediction Error for Mixture Cure Models 
 The objectives of this work are to: 

1) assess the predictive accuracy of mixture cure models compared to regular survival models and 

2) compare the two different methods of estimating the expected Brier score, as outlined above. 

 We will use the two methods for estimating Brier score, (1) and (2), Error! Reference 

source not found.and will apply them to mixture cure models. We will be calculating a naïve 

estimate of the expected Brier score and will compare this to the Graf Brier score. For the naïve 

estimate, all observations which were censored before the time of interest will be eliminated and 

no weighting will be applied to the remaining data. For diseases with cures, a high level of 

censoring tends to occur near the end of the observation time. Therefore, for higher values of , 

the naïve estimate of the Brier score will be calculated over fewer observations, without 

compensating for the loss of information. This could lead to inaccurate assessment of the 

predictive accuracy of the model, particularly when censoring rates are high (Graf et al, 1999). 

 Our hypotheses are as follows: 

1) we expect that the Graf Brier score will provide a more accurate measure of prediction 

accuracy as opposed to the naïve estimate, particularly during the times when the censoring rate is 

high; 

2) we expect that using mixture cure models as the predictive distributions as opposed to regular 

survival models will result in higher predictive accuracy of the models, when cured patients are 

present. 

 We will test these hypotheses by conducting two simulation studies in Chapter 3 and 

Chapter 4. In Chapter 5 we will apply the Brier score calculations to a dataset of 91 leukemia 

patients who received autologous or allogeneic bone marrow transplants. 
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Chapter 3 

Simulation Study Based on Exponential Distribution 

Methods 
We will use a simulation study to assess the predictive accuracy of the mixture cure rate 

model through the Brier scores. We created two sets of data: the training data and test data. Both 

consist of 500 datasets, each containing 200 patients. One covariate was included, indicating if 

the patient was in the control or treatment group. In each dataset, 100 patients were in the control 

group and 100 in the treatment group. A parametric mixture cure model was used to simulate the 

datasets. The baseline distribution for the uncured group was set as an exponential distribution, 

corresponding to the following survival function: 

                                                               
(Error! Reference source not found.) 

We set  and . The covariate  or  indicates if the patient is in 

the control or treatment group, respectively. The proportion of uncured patients,  is assumed 

to have a logistic form: 

                                                    
(Error! Reference source not found.) 

We set  and . This corresponds to a cure rate of 11.9% in the control group and 

26.9% in the treatment group. 

 The overall survival function then has the form: 

                               

         
(Error! Reference source not found.) 



 

10 

 

We used a uniform distribution from 0 to 25, , to generate the censoring times for 

the dataset. 

We use the data from the training data in the mixture cure model log likelihood function: 

                     
(Error! Reference source not found.) 

By maximizing this function, we obtain the maximum likelihood estimates: , ,  and  

for each dataset. We use these estimates to obtain 500 predictive distributions,  in a 

mixture cure model exponential form, based on each training dataset. 

For comparison, we obtain estimates, , from the training data based on the 

assumption that  has an exponential distribution. This will also be used to predict survival 

probabilities of the test data. This predicted survival function takes on the form: 

                                                                                              
(Error! Reference source not found.) 

Naïve Estimate of Brier score 

 First, we calculated a naïve estimate of the expected Brier score at various time points, 

, using (1)Error! Reference source not found.. 

Graf Brier score 

 We will be using Graf’s weighted Brier score (2) for assessing the predictive accuracy of 

both the exponential mixture cure model distribution and the exponential distribution. This was 

calculated at the same time points, , that were used to calculate the naïve estimate of the 

expected Brier score values with no weighting, to allow for comparison between the two values. 

The censoring weights, , were obtained from censoring distributions of the training datasets. 

 The predictions were made based on the characteristics of patients in the 500 test 

datasets. The survival probabilities of patients in each test dataset was calculated by , 

which is estimated from the training datasets; the value of the covariate, , comes from the test 

dataset. 
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 For the naïve Brier score and the Graf Brier score, the predicted probabilities were 

obtained from the estimated MCM exponential distribution and the estimated exponential 

distribution for comparison. 

Results 
The training data had a cure rate of 12.044% in the control group and 26.512% in the 

treatment group. In addition, the simulation produced an overall censoring rate of 24.076% with 

15.794% of the control group and 32.358% of the treatment group being censored in the training 

data. The Kaplan-Meier curves of the training data for the 500 simulation runs are shown below: 

 

Figure 1: Kaplan-Meier curves of training data for exponential simulation study 
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 The maximum likelihood estimates for the exponential mixture cure model (5Error! 

Reference source not found.), along with their biases and variances, are shown in the table 

below. 

Table 1: Maximum likelihood estimates of parameters of exponential mixture cure model 

for simulation study 

  Average  Bias  Variance 

  0.007717957  ‐0.007717957  0.01286742 

  ‐0.698216  0.005068773  0.03082995 

  2.027913  ‐0.0279135  0.1251805 

  ‐0.9878687  ‐0.01213133  0.1827085 
 

The estimated MCM exponential distributions (based on the maximum likelihood 

estimates) are shown in the graph below. 
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Figure 2: Exponential mixture cure model predictive distributions for exponential 

simulation study 

The estimates for the exponential distribution (7Error! Reference source not found.) 

and their variances are in the following table. 

Table 2: Maximum likelihood estimates of exponential model for simulation study 

  Average  Variance 

  0.3743178  0.008019858 

  ‐0.9151651  0.08345706 
 

The Kaplan-Meier curves of the training data and the estimated exponential distribution 

are shown in the graph below. 
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Figure 3: Exponential predictive distributions for exponential simulation study 

The naïve expected Brier score and Graf Brier score were calculated for various time 

points, using the estimated exponential mixture cure model and estimated exponential distribution 

as predictive probability distributions. The results of the Brier score calculations and their 

variances are shown in the table below. Each score displayed is the average of the 500 scores that 

were calculated (one for each training/test dataset pairing). 

 

 

Table 3: Average estimates of Brier scores for exponential simulation study 

Predictive 
distributions: 

MCM Exponential Exponential 

 Average naïve Average Graf Average naïve Average Graf 
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estimate 
(variance) 

estimate 
(variance) 

estimate 
(variance) 

estimate 
(variance) 

1 0.2276933 
(0.0001111937) 

0.2275078 
(0.0001246475) 

0.27310758 
(0.0006350960) 

0.2707867 
(0.0006475710) 

2 0.2143839 
(0.0001367306) 

0.2176023 
(0.0001835196) 

0.27277453 
(0.0006508592) 

0.2711268 
(0.0006444379) 

3 0.1863555 
(0.0001910286) 

0.1932529 
(0.0002575364) 

0.23278384 
(0.0005128121) 

0.2338234 
(0.0004997375) 

4 0.1662064 
(0.0002123714) 

0.1768016 
(0.0003149035) 

0.19837043 
(0.0003934002) 

0.2030017 
(0.0003900555) 

5 0.1520928 
(0.0002182118) 

0.1663882 
(0.0003635569) 

0.17294731 
(0.0003280802) 

0.1820086 
(0.0003645048) 

6 0.1426036 
(0.000232923) 

0.1605292 
(0.0004259282) 

0.15514110 
(0.0002998388) 

0.1691836 
(0.0004005527) 

7 0.1352621 
(0.000237035) 

0.1565761 
(0.0004776012) 

0.14229196 
(0.0002956682) 

0.1616663 
(0.0004809716) 

8 0.1289458 
(0.0002410116) 

0.1538611 
(0.0005609607) 

0.13226417 
(0.0003030718) 

0.1575897 
(0.0006265665) 

9 0.1234623 
(0.0002459546) 

0.1526355 
(0.000637775) 

0.12416854 
(0.0003230699) 

0.1565387 
(0.0007987697) 

10 0.1187095 
(0.0002359055) 

0.1520455 
(0.0007420051) 

0.11758397 
(0.0003289320) 

0.1572713 
(0.0010481101) 

11 0.1136474 
(0.0002365726) 

0.1510704 
(0.0008238036) 

0.11093924 
(0.0003462608) 

0.1581433 
(0.0012845981) 

12 0.1089713 
(0.0002352198) 

0.1504019 
(0.0009291851) 

0.10482789 
(0.0003623071) 

0.1596978 
(0.0015741527) 

13 0.1041333 
(0.0002272226) 

0.1499839 
(0.001096411) 

0.09847850 
(0.0003573427) 

0.1616103 
(0.0019708574) 

14 0.09957615 
(0.0002223198) 

0.1499041 
(0.001192826) 

0.09239299 
(0.0003505671) 

0.1640538 
(0.0022819010) 

15 0.09472293 
(0.0002178313) 

0.1503255 
(0.001445600) 

0.08565029 
(0.0003391631) 

0.1669271 
(0.0028804293) 

16 0.08961762 
(0.0002093514) 

0.1507063 
(0.001770856) 

0.07832163 
(0.0003259573) 

0.1697561 
(0.0037159676) 

17 0.084981 
(0.0002035064) 

0.1505321 
(0.001866152) 

0.07151644 
(0.0003079752) 

0.1714855 
(0.0040472564) 

18 0.07994344 
(0.0002086972) 

0.1522061 
(0.002590140) 

0.06392788 
(0.0002894862) 

0.1758052 
(0.0056311177) 

19 0.07475355 
(0.0002057451) 

0.1557184 
(0.004050653) 

0.05593788 
(0.0002661373) 

0.1824511 
(0.0085640356) 

20 0.06924136 
(0.0001996191) 

0.1559889 
(0.006345177) 

0.04733007 
(0.0002306520) 

0.1847419 
(0.0132493112) 

21 0.06386552 
(0.0002024436) 

0.1590379 
(0.008067667) 

0.03871215 
(0.0002026792) 

0.1907229 
(0.01738908) 

22 0.05847720 
(0.0001962808) 

0.1632127 
(0.012394528) 

0.02994575 
(0.0001674280) 

0.1980461 
(0.02867353) 

 

Discussion 
The maximum likelihood estimates obtained from the training data for the exponential 

mixture cure model, as seen in Table 1, had small variances and little bias from the exact values 
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used to generate the data. As well, the estimated parameters for the exponential distribution, seen 

in Table 2, that was fit to the data had little variation. These distributions were then used to form 

predictions on the test data. 

We had hypothesized that the estimated Brier scores using the exponential mixture cure 

model as the predictive model would be lower than the estimated Brier scores based on the 

exponential model – thus indicating that the mixture cure model has greater predictive accuracy. 

The estimated Brier scores calculated for times  (Table 3) are displayed in the 

graph (Figure 4) below. 

 

Figure 4: Naïve and Graf estimates of Brier score for exponential simulation study 

 The naïve estimates suggest that the predictive accuracy of both models is steadily 

increasing over time. There is no significant difference in the naïve estimates for the two different 
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models for most of the observation period. During the end of the observation time, however, the 

naïve estimates suggest that the predictive accuracy of the exponential model is better than the 

predictive accuracy of the exponential mixture cure model (the “correct” model). 

Unlike the naïve estimate, the difference seen between the Graf Brier score estimates 

during later times indicates that the exponential mixture cure model has greater predictive 

accuracy. This difference was expected, given that we know the exponential mixture cure model 

to be “correct,” based on how the data was simulated. 

These results suggest that the naïve estimate of the Brier score is less effective at 

differentiating between different predictive models. Conversely, the Graf Brier score is better at 

detecting model mis-specification. This was particularly apparent in the tail-end of the 

distribution, which is where the exponential distribution diverges from the true Kaplan-Meier 

curves the most. Also, the tail-end of the distribution is where majority of the censoring occurs – 

this suggests that incorporating a weighting scheme for censoring provides a more appropriate 

predictive accuracy measure compared to simply eliminating the censored observations. 

The following graph displays the Kaplan-Meier curves for the test data of the exponential 

simulation study. 
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Figure 5: Kaplan-Meier curves of test data of exponential simulation study 

These curves demonstrate that the predictive models based on the exponential mixture 

cure model (Figure 2) are a good fit to the test data, compared to the curves of the exponential 

model (Figure 3), implying that the mixture cure model would make better predictions – this is 

illustrated by the Graf estimate of the Brier score. The exponential model curves appear to be a 

good fit near the beginning of the observation time, when censoring rates are low in the test data 

compared to event rates. When the event rate decreased and the survival status levelled off in the 

test data, the exponential curves continue to decrease to zero, whereas the exponential mixture 

cure model plateaus at values greater than 0. This resulted in the Graf estimate having higher 

values for the exponential model compared to the values for the mixture cure model at these 

times. 
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Chapter 4 

Simulation Study Based on Weibull Distribution 

Methods 

 Our second simulation study was run using a similar method as the first one – the 

difference is that this simulation study used the Weibull mixture cure model, as opposed to the 

exponential mixture cure model of the first simulation. The training data and test data both consist 

of 100 datasets, each with 200 patients. Similar to the first study, 1 covariate was included, 

indicating if the patient was in the control or treatment group. The survival function for the 

uncured group followed a Weibull regression model: 

                
(Error! Reference source not found.) 

We set ,  and . The covariate  or  indicates if the 

patient is in the control or treatment group, respectively. 

 The proportion of uncured patients, , and the censoring distribution were derived 

using the same method as the first simulation, the logistic form (4), as well as the same 

parameters (  and ). 

The overall survival function then has the form: 

 

 

        
(Error! Reference source not found.) 

 For comparison, we obtained estimates, , from the training data based on the 

assumption that  follows a Weibull distribution: 
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(Error! Reference source not found.) 

 We then used the naïve estimate and Graf estimate of the Brier score to assess and 

compare the predictive accuracy of these two predictive distributions. 

Results 
The training data had a cure rate of 12.06% in the control group and 27% in the treatment 

group. In addition, the simulation produced an overall censoring rate of 22.93% with 15.75% of 

the control group and 30.11% of the treatment group being censored in the training data. The 

Kaplan-Meier curves of the training data are shown in the following graph. 

 

Figure 6: Kaplan-Meier curves of training data for Weibull simulation study 
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The average of the 100 maximum likelihood estimates of the Weibull mixture cure model 

(9Error! Reference source not found.), based on the training data, are shown in the table below, 

along with their biases and variances. 

 

 

 

 

Table 4: Maximum likelihood estimates of Weibull mixture cure model for simulation study 

  Average  Bias  Variance 

  0.5035522  ‐0.003552237  0.00201947 

  0.7055685  ‐0.01242136  0.04698409 

  0.3113423  ‐0.3113423  0.09452987 

  2.016294  ‐0.01629411  0.1263324 

  ‐1.060478  0.0604781  0.1281705 
 

The Weibull mixture cure model predictive distributions are shown in the graph below. 
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Figure 7: MCM Weibull predictive distributions for Weibull simulation study 

The averages of the maximum likelihood estimates of the Weibull regression model 

(9Error! Reference source not found.) fit to the training data are shown in the table below, with 

their variances. 

Table 5: Maximum likelihood estimates of Weibull model for simulation study 

  Average  Variance 

  0.1539787  0.1120935 

  1.199192  0.2578648 

  2.792974  0.02625505 
 

The Weibull regression model predictive distributions are shown in the graphs below. 
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Figure 8: Weibull predictive distributions for Weibull simulation study 

The naïve expected Brier score and Graf Brier score were calculated for various time 

points, using the estimated Weibull mixture cure model and estimated Weibull distribution as 

predictive probability distributions. The results of the Brier score calculations and their variances 

are shown in the table on the next page. Each score displayed is the average of the 100 scores that 

were calculated (one for each training/test dataset pairing). 
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Table 6: Average estimates of Brier scores for Weibull simulation study 

Predictive 
distributions: 

MCM Weibull  Weibull 

  Average naïve 
estimate 
(variance) 

Average Graf 
estimate 
(variance) 

Average naïve 
estimate (variance) 

Average Graf 
estimate (variance) 

1  0.234562 
(0.0001192478) 

0.236602 
(0.0001436231) 

0.241485 
(0.00006136293) 

0.242351 
(0.00008010483) 

2  0.203338 
(0.0002776093) 

0.208442 
(0.0003195601) 

0.210697 
(0.0001402258) 

0.213777 
(0.0001710910) 

3  0.181563 
(0.0003036084) 

0.191621 
(0.0004271848) 

0.187793 
(0.0001767553) 

0.195301 
(0.0002639764) 

4  0.166531 
(0.0003133733) 

0.180286 
(0.0004681693) 

0.171029 
(0.0002019391) 

0.182297 
(0.0003228286) 

5  0.156259 
(0.0003110577) 

0.173348 
(0.0004735165) 

0.158918 
(0.0002166731) 

0.17411 
(0.0003578231) 

6  0.147641 
(0.0003454360) 

0.167489 
(0.0004955986) 

0.148776 
(0.0002496958) 

0.167598 
(0.0003995823) 

7  0.14018 
(0.0003364451) 

0.164054 
(0.0005444583) 

0.139856 
(0.0002710756) 

0.163823 
(0.0005010500) 

8  0.133834 
(0.0003461761) 

0.161017 
(0.0006280170) 

0.132128 
(0.0002821128) 

0.16063 
(0.0006098755) 

9  0.128455 
(0.0003497034) 

0.159371 
(0.0007355028) 

0.125391 
(0.0003133122) 

0.159123 
(0.0007912322) 

10  0.122914 
(0.0003431191) 

0.157855 
(0.0008228798) 

0.118441 
(0.0003142068) 

0.157766 
(0.0009253452) 

11  0.117785 
(0.0003526544) 

0.157597 
(0.0010118910) 

0.111874 
(0.0003359614) 

0.15799 
(0.001200903) 

12  0.112806 
(0.0003397649) 

0.155654 
(0.0011183573) 

0.105553 
(0.0003159911) 

0.156476 
(0.001406673) 

13  0.108144 
(0.0003450561) 

0.154282 
(0.0010504669) 

0.099399 
(0.0003132640) 

0.155326 
(0.001385401) 

14  0.103321 
(0.0003376378) 

0.155191 
(0.0011756487) 

0.093027 
(0.0002955728) 

0.157089 
(0.001614147) 

15  0.09798 
(0.0003360664) 

0.153435 
(0.0013246478) 

0.085842 
(0.0002673394) 

0.155561 
(0.001838589) 

16  0.093115 
(0.0003492903) 

0.156995 
(0.0022875886) 

0.079364 
(0.0002716610) 

0.161016 
(0.003403603) 

17  0.088628 
(0.0003593661) 

0.157846 
(0.0028316907) 

0.073207 
(0.0002558021) 

0.163223 
(0.004503762) 

18  0.083376 
(0.0003891428) 

0.157231 
(0.0035024135) 

0.065934 
(0.0002568001) 

0.16323 
(0.005679514) 

19  0.078119 
(0.0003992559) 

0.156938 
(0.0046232527) 

0.058569 
(0.0002358261) 

0.163636 
(0.007592186) 

20  0.073635 
(0.0003979632) 

0.161541 
(0.0055898550) 

0.051939 
(0.0002013913) 

0.169758 
(0.008678515) 

21  0.068419  0.157615  0.044228  0.16563 
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(0.0003896729)  (0.0057444273)  (0.0001586443)  (0.009133175) 

Discussion 

 The maximum likelihood estimates obtained in the Weibull simulation study for the 

Weibull mixture cure model, as shown in  

Table 4, have small variances and biases, with the exception of the estimate for .  is the 

coefficient for the covariate, . When simulating the time to event data, this coefficient was set 

equal to 0. However, the cure rate was assumed to have a logistic form which was dependent on 

; this altered the regression models for  and , thus biasing the  coefficient away 

from 0. The maximum likelihood estimates for  still had small variance and a small range. 

Similar to the first simulation study, we had hypothesized that the estimated Brier scores 

using the Weibull mixture cure model as the predictive distribution would be lower than the 

estimated Brier scores based on the Weibull model. The estimated Brier scores calculated for 

times  (Table 6) are displayed in the graph below. 
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Figure 9: Naïve and Graf estimates of Brier score for Weibull simulation study 

 Similar to the exponential simulation study, these results suggest that the naïve estimate 

is less affected by model mis-specification. Also, the Graf Brier score estimates suggest that the 

Weibull mixture cure model has lower prediction error than the Weibull regression model in 

times late in the observation period. 

 For both the naïve and Graf estimates, there is very little difference between the 

predictive accuracy of the two models at earlier times. During later times, the difference seen 

between the two models in the naïve estimates indicate that the Weibull model has greater 

predictive accuracy than the mixture cure model – demonstrating the inaccuracy of the naïve 

estimate when censoring is high. 
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 There begins to be a difference, although a small one, in the predictive accuracies of the 

two models based on Graf estimate at times very late in the observation period, although not as 

large as the difference seen in the exponential simulation study. This suggests that the Weibull 

regression model could be more flexible than the exponential model when applied to cure data. 

The following graph displays the Kaplan-Meier curves for the test data of the Weibull 

simulation study. 

 

Figure 10: Kaplan-Meier curves of test data of Weibull simulation study compared to MCM 

Weibull and Weibull predictive models 

These curves demonstrate that the predictive models based on the Weibull mixture cure 

model (Figure 7) are a good fit to the test data, compared to the curves of the Weibull model 

(Figure 8). 
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The most noticeable difference between these curves and the curves from the exponential 

simulation study (Figure 2 and Figure 3) are the predictive models that do not incorporate cure 

rates. The Weibull regression models shown here decrease to zero at a much slower rate than the 

exponential models used in the first simulation study. Because of their slow rate at decreasing to 

zero, they don’t diverge from the cure data as much as the exponential model; this results in a 

smaller difference in predictive accuracy between the Weibull mixture cure model and the 

Weibull model.



 

29 

 

 

Chapter 5 

Application: Bone Marrow Transplant Study 

Methods 
 We obtained a dataset of 91 patients with refractory acute lymphoblastic leukemia. 

Treating acute lymphoblastic leukemia with chemotherapy has been shown to have high long-

term disease-free survival rates. Chemoradiotherapy followed by a bone marrow transplant is 

used for the patients for whom primary chemotherapy was unsuccessful and for those considered 

to be at high risk of relapse. Allogeneic bone marrow transplants come from matched sibling 

donors of the patients. For the patients for whom such matches are unavailable, autologous 

transplants were used. This study compared the long-term survival rates of patients with 

refractory acute lymphoblastic leukemia who were treated with bone marrow transplants (Kersey 

et al, 1987). 

In the sample of 91 patients, 46 of these patients received allogeneic bone marrow 

transplants, while the other 45 received autologous transplants. 22 of the patients were censored 

during the observation period, resulting in an overall censoring rate of 24.2%. 20% of those 

receiving autologous transplants were censored, compared to 28.3% of the patients receiving 

allogeneic transplants. The Kaplan-Meier curves for this dataset are shown below: 
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Figure 11: Kaplan-Meier curves for transplant data 

 The long-term censored survival times seen in these curves are indicative of the presence 

of cured patients. The levelling-off of the curves for the two treatment groups suggests that the 

autologous treatment has a cure rate of 19.4% and the cure rate of the allogeneic group is 26.3%. 

Previous analysis of this dataset suggested that the Weibull mixture cure model survival 

distribution provides a better fit to this data than the exponential mixture cure model, which was 

used for the simulated datasets (Peng et al, 2001). 

In order to apply the different Brier scores to this dataset, we will use the leave-one-out 

cross-validation method. We partition the full dataset into 91 subsets, each with one observation 

from the full dataset excluded. A Weibull mixture cure model is fit to each subset of 90 patients. 

This estimated model will then be used to predict the survival status of the one observation 

excluded from the dataset (Simon et al, 2011). 

 The Weibull mixture cure models were obtained using the method of maximum 

likelihood estimation that was used for the simulation study. The survival distribution for the 
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uncured proportion was assumed to have a Weibull form (Error! Reference source not 

found.8). 

Similar to the simulation studies, the proportion of uncured patients, , has a logistic 

form. The maximum likelihood estimates for each predictive distribution, , , ,  and , 

were obtained from maximizing the log-likelihood function over each leave-one-out dataset. 

 For comparison, we obtained estimates of the predictive distribution, , with the 

assumption that the data followed a Weibull model (10Error! Reference source not found.). We 

will obtain the maximum likelihood estimates: ,  and  by maximizing the log likelihood 

function (6). 

Results 
 We fit a Weibull mixture cure model to the 91 transplant datasets (of 90 patients each) 

(9). The average of the 91 maximum likelihood estimates are shown in the table below. 

Table 7: Maximum likelihood estimates of Weibull mixture cure model for transplant study 

  Average 

  1.144919 

  ‐4.928907 

  ‐0.6558068 

  1.388453 

  ‐0.4173844 
 

 These estimates correspond to an approximate cure rate of 20% in the group receiving 

autologous transplants and 27.5% in the group receiving allogeneic transplants; these values are 

close to the hypothesized cure rates of the population, as estimated by the proportion of long-term 

survivors seen in the Kaplan-Meier curves (Figure 11). These estimates were then used to form 

the 91 predictive distributions which were used in the leave-one-out cross-validation estimation 

of the Brier score. 

The maximum likelihood estimates and their variances for the parameters of the Weibull 

model (10) that was fit to the dataset are shown in the table below. 
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Table 8: Maximum likelihood estimates of Weibull model for example study 

  Average 

  5.955005 

  0.6588245 

  1.546439 
 

 The following table has the average of the Brier score estimates for both predictive 

models. The Brier scores were calculated for various time points and their curves are shown 

below, as well. 

Table 9: Average estimates of Brier scores for example study 

Distribution used 
for predicted 
probabilities: 

MCM Weibull  Weibull 

  Average naïve 
expected Brier 
Score 

Average Graf 
Brier Score 

Average naïve 
expected Brier 
Score 

Average Graf 
Brier Score 

100  0.2455087  0.2455087  0.2430432  0.2430432 
200  0.2370015  0.2370015  0.2555144  0.2555144 
300  0.2221809  0.2221809  0.2434555  0.2434555 
400  0.2171609  0.2171609  0.2311122  0.2311122 
500  0.2120279  0.2120279  0.2202387  0.2202387 
600  0.2051937  0.2051937  0.2111825  0.2111825 
700  0.2019644  0.2059645  0.2054844   0.2086471 
800  0.1808314  0.1967902  0.1836620  0.1975743 
900  0.1759551  0.1915863  0.1776155  0.1926291 
1000  0.1673226  0.1930550  0.1685035  0.1953927 
1100  0.1550274  0.1905181  0.1529464  0.1920552 
1200  0.1387005  0.1904314  0.1333691  0.1937806 
1300  0.1332415  0.1815851  0.1254303  0.1845829 
1400  0.1331783  0.1815979  0.1242324  0.1858785 
1500  0.1263409  0.1798587  0.1141484  0.1844388 
1600  0.1121874  0.1750778  0.09373566  0.1783260 
1700  0.09441106  0.1771561  0.06850157  0.1837663 
1800  0.08172313  0.1807896  0.04921626  0.1913718 
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Discussion 

We estimated  for the transplant patient dataset under the assumption that  

follows a Weibull mixture cure model and then a simple Weibull distribution, similar to the 

Weibull simulation study. 

Based on the results of our simulation studies, we expected that naïve estimates of the 

Brier score would overestimate the predictive accuracy of the models, compared to the Graf 

estimate. As well, based on the Weibull simulation study, we did not expect to see a significant 

difference between the Brier scores of the two different predictive distributions. The estimated 

Brier scores calculated for times  (Table 9) are displayed in the graph 

below. 
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Figure 12: Naïve and Graf estimates of Brier score for transplant study 

 Similar to the simulation studies, the naïve estimates suggest that the predictive accuracy 

of both models increases over time. The Graf estimates also show a slight increase in predictive 

accuracy over time, though not as much as the naïve estimates. However, the scores do not 

differentiate well between the mixture cure model and the survival model which does not 

incorporate cure rates, which is similar to what was seen in the Weibull simulation study. 

An interesting point to note for this dataset is that the naïve estimates and the Graf 

estimates are equal for each model from . This happens because the first 

case of censoring occurs at , but several events occur before this time. So, when 

calculating the naïve estimate, no observations were eliminated from the dataset for . 

As well, the weights for the Graf Brier score are based on the Kaplan-Meier estimates of the 
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inverse censoring distribution of the dataset. Therefore, for , there were no 

observations in category 3 (  and ) and the weights for all the observations was 

equal to 1, making this score equivalent to the naïve estimate. 

The Kaplan-Meier curves of the transplant dataset are illustrated below, along with the 

estimated predictive models based on the Weibull mixture cure model (9Error! Reference 

source not found.) and the Weibull model (10). 

 

Figure 13: Kaplan-Meier curves of transplant data with MCM Weibull and Weibull 

predictive models 

 Upon visual inspection, the Weibull mixture cure model appears to fit the data well for 

both groups of patients. The Weibull model seems to have a slightly worse fit; however, this 

model also has a long tail-end, decreasing to 0 well beyond the observation time period. This 

model differs from the Weibull mixture cure model mostly at the beginning of the observation 
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period, as shown by Figure 7. This was reflected by the Brier scores calculated for  

being lower for the mixture cure model. 
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Chapter 6 

Conclusions and Future Directions 

We had hypothesized that the Graf estimate of the Brier score would provide a more 

accurate assessment of the predictive accuracy of the two models. The results from both the 

simulation studies and the transplant dataset support this hypothesis. Particularly in the 

exponential simulation study, the Graf estimate is affected by using the incorrect model as the 

predictive distribution and better able at detecting which model is incorrect, compared to the 

naïve estimate. The naïve estimate simply ignores the effects of censoring on the predictive 

accuracy while the Graf estimate, on the other hand, compensates for the loss of information due 

to censoring by introducing a weighting scheme to the Brier score (Graf et al, 1999). The datasets 

we dealt with in all three studies had high censoring rates, resulting in the large difference 

between the naïve and Graf estimates. 

We had also expected that the Brier score estimates calculated when using mixture cure 

models as the predictive distribution would be lower than the estimates calculated using regular 

survival models. This hypothesis was supported by our results of the exponential simulation 

study, mostly for later times. Our results for the analysis of the Weibull simulation study and the 

transplant dataset, however, indicate that using a mixture cure model as opposed to a survival 

model has little improvement in predictive accuracy. 

The Weibull regression models used in the simulation study and the example study 

decrease to 0 less rapidly than the exponential regression model used in the first simulation, 

which means they could provide a more adequate fit to data involving cured patients than the 

exponential model; because it takes longer to decrease to 0, it might not diverge from cure data 

during the “plateau” as greatly as the exponential model would. Future research could involve 

extending the simulation study to include more complicated regression models, such as log-

normal, gamma, etc. 

As well, semi-parametric methods for modeling survival rates, such as the Cox 

proportional hazards model, could be used. Along with using different survival regression 
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models, there are also different cure models which can be used. The mixture cure model is one 

way of modelling survival rates of diseases with cures. The proportional hazards cure model is a 

semi-parametric method; future research could include comparisons of the predictive accuracy of 

the different types of cure models. 

Another area that could be researched further would be datasets with varying cure rates, 

as well as the censoring rates; perhaps there would be greater differences between the fits of the 

mixture cure models and their survival model counterparts when the cure rate is lower or higher. 

As well, the simulation studies and example study we conducted included only one covariate in 

the analysis. Further research could extend the simulation studies to include more than one 

covariate. 

Finally, another topic that was not addressed here was the decomposition of the expected 

Brier score. The expected Brier score formulas can be decomposed to give values for “resolution” 

and “calibration” – different aspects of predictive accuracy. Resolution is defined as the model’s 

ability to discriminate between when the event will and will not occur. Calibration is the measure 

of how well the estimated predicted event-free probabilities, ,correspond to the true event-

free probabilities, . Future research on the predictive accuracy of mixture cure models 

could look into changes in specific parts of the Brier score (Graf et al, 1999) (Yates, 1982).
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